[geometry-ml:05279] 【変更8月7日】東北大学幾何学セミナー

本多正平 shouhei.honda.e4 @ tohoku.ac.jp
2023年 8月 6日 (日) 10:52:57 JST


幾何学メーリングリストのみなさま,

先日8月7日に行われる予定の東北大学幾何学セミナーについて案内を流しましたが,その講演者の一人のQin
Deng(MIT)さんのフライトスケジュールが変更になった関係で,Qin
Dengさんの講演がキャンセルとなり,次のように当日のスケジュールが変更になったことをお知らせいたします;

—ここから—

形式:対面(数学棟201号室)
スケジュール:
13:00-14:00 Elia Brue (Bocconi University)
14:00-14:30 質疑応答
14:30-15:30 Chiara Rigoni (University of Vienna)
15:30-16:00 質疑応答


講演者:Elia Brue氏(Bocconi University)
タイトル:Collapsing under lower curvature bounds and topological stability
概要:The study of collapsing Riemannian manifolds under various curvature
constraints is a topic of profound interest in geometric analysis. After a
brief introduction to the subject, I will present a new topological
stability result. Specifically, I will demonstrate that a sequence of tori
with a uniform diameter and lower scalar curvature bound converges to a
torus.

This is based on joint work with A. Naber and D. Semola.


講演者:Chiara Rigoni氏(University of Vienna)
タイトル:Convergence of metric measure spaces satisfying the CD condition for
negative values of the dimensional parameter
概要:In this talk, we show the stability of the curvature-dimension condition
for negative values of the generalized dimension parameter under a suitable
notion of convergence. We start by presenting an appropriate setting to
introduce the CD(K, N)-condition for N < 0, allowing metric measure
structures in which the reference measure is quasi-Radon. Then in this
class of spaces we introduce the distance $d_{\mathsf{iKRW}}$, which
extends the already existing notions of distance between metric measure
spaces. Finally, we prove that if a sequence of metric measure spaces
satisfying the CD(K, N)-condition with N < 0 is converging with respect to
the distance $d_{\mathsf{iKRW}}$ to some metric measure space, then this
limit structure is still a CD(K, N) space. This talk is based on a joint
work with M. Magnabosco and G. Sosa.


—ここまで—


なお,次のページでも本セミナーの情報を見ることができます;

https://sites.google.com/site/aobageometry/

-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20230806/1862f839/attachment.html>


Geometry-ml メーリングリストの案内