<div dir="auto">幾何学メーリングリストのみなさま,<br>
<br>
先日8月7日に行われる予定の東北大学幾何学セミナーについて案内を流しましたが,その講演者の一人のQin Deng(MIT)さんのフライトスケジュールが変更になった関係で,Qin Dengさんの講演がキャンセルとなり,次のように当日のスケジュールが変更になったことをお知らせいたします;<br>
<br>
—ここから—<br>
<br>
形式:対面(数学棟201号室)<br>
スケジュール:<br>
13:00-14:00 Elia Brue (Bocconi University)<br>
14:00-14:30 質疑応答<br>
14:30-15:30 Chiara Rigoni (University of Vienna)<br>
15:30-16:00 質疑応答<br>
<br>
<br>
講演者:Elia Brue氏(Bocconi University)<br>
タイトル:Collapsing under lower curvature bounds and topological stability<br>
概要:The study of collapsing Riemannian manifolds under various curvature constraints is a topic of profound interest in geometric analysis. After a brief introduction to the subject, I will present a new topological stability result. Specifically, I will demonstrate that a sequence of tori with a uniform diameter and lower scalar curvature bound converges to a torus.<br>
<br>
This is based on joint work with A. Naber and D. Semola.<br>
<br>
<br>
講演者:Chiara Rigoni氏(University of Vienna)<br>
タイトル:Convergence of metric measure spaces satisfying the CD condition for negative values of the dimensional parameter<br>
概要:In this talk, we show the stability of the curvature-dimension condition for negative values of the generalized dimension parameter under a suitable notion of convergence. We start by presenting an appropriate setting to introduce the CD(K, N)-condition for N < 0, allowing metric measure structures in which the reference measure is quasi-Radon. Then in this class of spaces we introduce the distance $d_{\mathsf{iKRW}}$, which extends the already existing notions of distance between metric measure spaces. Finally, we prove that if a sequence of metric measure spaces satisfying the CD(K, N)-condition with N < 0 is converging with respect to the distance $d_{\mathsf{iKRW}}$ to some metric measure space, then this limit structure is still a CD(K, N) space. This talk is based on a joint work with M. Magnabosco and G. Sosa.<br>
<br>
<br>
—ここまで—<br>
<br>
<br>
なお,次のページでも本セミナーの情報を見ることができます;<br>
<br>
<a href="https://sites.google.com/site/aobageometry/" rel="noreferrer noreferrer" target="_blank">https://sites.google.com/site/aobageometry/</a></div>