[geometry-ml:05126] 幾何学セミナー(Omar Kidwai, Claudio Meneses)

m guest marguemg22 @ gmail.com
2023年 4月 13日 (木) 15:38:58 JST


幾何学分科会メーリングリストの皆様

下記のようにセミナーを開催いたしますのでご案内申し上げます。

場所:早稲田大学 西早稲田キャンパス 51-17-08
日程:2023年4月26日  (水)(15:30 -17:00)

講演者:Omar Kidwai (University of Birmingham, UK)
 題目:"Voros coefficients of quantum curves and the (uncoupled) BPS
Riemann-Hilbert problem"
ABSTRACT: The notion of BPS structure formalizes some of the output of the
study of four-dimensional N=2 QFTs, as well as the Donaldson-Thomas theory
of CY3 triangulated categories. Bridgeland formulated a certain
Riemann-Hilbert-like problem associated to such a structure, seeking
jumping functions in the h-bar plane with given asymptotics --- these
appear in the description of complex hyperkahler metrics associated to the
CY3 category, and physically correspond to the "conformal limit". Starting
from a quadratic differential on a Riemann surface X, I'll recall how to
associate a BPS structure to it, and explain, in the simplest examples, how
to produce a solution to the Riemann-Hilbert problem using topological
recursion, quantum curves, and Borel resummation. Based on joint work with
K. Iwaki.

場所:早稲田大学 西早稲田キャンパス 51-17-06
日程:2023年4月28日  (金)(15:30 -17:00)

講演者:Claudio Meneses (University of Kiel, Germany)
 題目:"Variation of Kaehler metrics on moduli of parabolic bundles"
ABSTRACT: Moduli spaces of parabolic bundles on Riemann surfaces possess a
peculiar dependence on a set of real parameters, which can be interpreted
algebro-geometrically as a choice of polarization, leading to wall-crossing
phenomena in the study of their binational geometry. At the same time,
these moduli spaces come equipped with families of natural Kaehler metrics,
which are known to depend real-analytically on these parameters. It is
compelling to try to express this dependence as a suitable “Torelli
theorem”, and to answer the following question: to what extent does the
Kaehler metric (an analytic invariant) determine the stability conditions
that define the moduli problem?
In this talk I will describe how this variation problem can be addressed in
terms of analytic invariants associated to the spectral geometry of
Fuchsian groups. I will also explain how this problem determines the
analogous variations of hyperkaehler metrics on moduli of parabolic Higgs
bundles, and its relation to the classification of gravitational instantons
of ALG type. This is work in progress, joint with Hartmut Weiss.

皆様のご参加をお待ち申し上げます。

世話人
Martin Guest

-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20230413/5bb7a21b/attachment.html>


Geometry-ml メーリングリストの案内