[geometry-ml:04902] OIST Geometric PDE and Applied Analysis Seminar (10/27)
Qing Liu
Qing.Liu @ OIST.JP
2022年 10月 21日 (金) 10:17:57 JST
幾何学メーリングリストの皆様
沖縄科学技術大学院大学の柳青と申します.
以下の要領でハイブリッド形式でセミナーを開催致します.
OIST関係者以外の方はオンラインでご参加をお願いいたします.
皆様のご参加をお待ちしております.
柳青
==========================================
Date: Thursday, October 27, 16:00-17:00
Speaker: Kazuhiro Kuwae (Fukuoka University)
Zoom registration: https://oist.zoom.us/meeting/register/tJUpcOihqT0uGtAe4wlWD6SBoZEd4Abcaorn
Title: Liouville theorem for $V$-harmonic maps under non-negative $(m, V)$-Ricci curvature for non-positive $m$
Abstract: This talk is based on a joint work with Xiangdong Li (CAS AMSS), Songzi Li (Renming University of China) and Yohei Sakurai (Saitama University). We consider a generalization of bounded Liouville property for $V$-harmonic maps under non-negative Ricci curvature in terms of $m$-Bakry-Émery Ricci tensor for non-positive $m$. This condition is quite weaker than the non-negativity of usual $m$-Bakry-Émery Ricci curvature for which $m$ is greater than the dimension $n$ of the source Riemannian manifold. We establish a Liouville type theorem of $V$-harmonic maps into Hadamard manifolds having a growth condition which depends on the shape of $V$-Laplacian comparison theorem under such non-negative $m$-Bakry-Émery Ricci curvature. We prove the result by use of stochastic analysis. Of course, one can prove the result by purely geometric analysis.
-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20221021/59a5314e/attachment.html>
Geometry-ml メーリングリストの案内