<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
<div class="">幾何学メーリングリストの皆様</div>
<div class=""><br class="">
</div>
<div class="">沖縄科学技術大学院大学の柳青と申します.<br class="">
以下の要領でハイブリッド形式でセミナーを開催致します.
<div class="">OIST関係者以外の方はオンラインでご参加をお願いいたします.</div>
<div class="">皆様のご参加をお待ちしております.<br class="">
<br class="">
柳青<br class="">
<br class="">
==========================================<br class="">
<br class="">
Date: Thursday, October 27, 16:00-17:00<br class="">
Speaker: Kazuhiro Kuwae (Fukuoka University)</div>
<div class="">Zoom registration: <a href="https://oist.zoom.us/meeting/register/tJUpcOihqT0uGtAe4wlWD6SBoZEd4Abcaorn" class="">https://oist.zoom.us/meeting/register/tJUpcOihqT0uGtAe4wlWD6SBoZEd4Abcaorn</a></div>
<div class=""><br class="">
Title: Liouville theorem for $V$-harmonic maps under non-negative $(m, V)$-Ricci curvature for non-positive $m$<br class="">
<br class="">
Abstract: This talk is based on a joint work with Xiangdong Li (CAS AMSS), Songzi Li (Renming University of China) and Yohei Sakurai (Saitama University). We consider a generalization of bounded Liouville property for $V$-harmonic maps under non-negative Ricci
curvature in terms of $m$-Bakry-Émery Ricci tensor for non-positive $m$. This condition is quite weaker than the non-negativity of usual $m$-Bakry-Émery Ricci curvature for which $m$ is greater than the dimension $n$ of the source Riemannian manifold. We establish
a Liouville type theorem of $V$-harmonic maps into Hadamard manifolds having a growth condition which depends on the shape of $V$-Laplacian comparison theorem under such non-negative $m$-Bakry-Émery Ricci curvature. We prove the result by use of stochastic
analysis. Of course, one can prove the result by purely geometric analysis.</div>
</div>
<div class=""><br class="">
</div>
<div class=""><br class="">
</div>
<div class=""><br class="">
</div>
</body>
</html>