[geometry-ml:01973] 東大数理・複素解析幾何セミナー(1/27)
Yoshihiko Matsumoto
yoshim @ ms.u-tokyo.ac.jp
2014年 1月 21日 (火) 18:01:34 JST
皆様
東大数理・複素解析幾何セミナーのお知らせです。今回が本年度最後のセミナーとなります。
《日時》1月27日(月)11:00〜12:00(開始時刻が普段と違いますのでご注意ください)
《場所》東大数理(駒場キャンパス)126教室
《講演者》野口潤次郎氏(東京大学)
《タイトル》Logarithmic 1-forms and distributions of entire curves and integral points
《概要》The Log-Bloch-Ochiai Theorem says, in the most general form so far, that every entire curve in a Zariski open $X$ of a compact k\"ahler manifold $\bar{X}$ must be degenerate, if $\bar{q}(X)> \dim X$ ([NW02] Noguchi-Winkelmann, Math.\ Z. 239, 2002). If $X$ is defined a quasi-projective algebraic variety defined over a number field, then there is no Zariski dense $(S, D)$-integral subset in $X$ ($D=\partial X=\bar{X}\subset X$). We discuss this kind of properties more.
In the talk we will fix an error in an application in [NW02], and we will show
Theorem 1. (i) Let $M$ be a complex projective algebraic manifold, and let $D=\sum_{j=1}^l D_j$ be a sum of divisors on $M$ which are independent in supports. If $l> \dim M+r(\{D_j\})-q(M)$, then every entire curve $f:\mathbf{C} \to M\setminus D$ must be degenerate.
(ii) Let $M$ and $D_j$ be defined over a number field. If $l> \dim M+r(\{D_j\})-q(M)$, then there is no Zariski-dense $(S,D)$-integral subset of $M\setminus D$.
For the finiteness we obtain
Theorem 2. Let the notation be as above.
(i) If $l \geq 2 \dim M+r(\{D_j\})$, then $M\setminus D$ is completehyperbolic and hyperbolically embedded into $M$.
(ii) Let $M$ and $D_j$ be defined over a number field. If $l> 2\dim M+r(\{D_j\})$, then every $(S,D)$-integral subset of $M\setminus D$ is finite.
Precise definitions will be given in the talk. We will also discuss an application of Theorem 1 (ii) to generalize Siegel's Theorem on integral points on affine curves, recent due to A. Levin.
複素解析幾何セミナー担当
平地健吾、高山茂晴、松本佳彦
Geometry-ml メーリングリストの案内