<div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div>逧�ァ倥�</div><div><br></div><div>縺薙�縺顔衍繧峨○繧帝㍾隍�@縺ヲ蜿励¢蜿悶i繧後◆譁ケ縺ッ縺泌ョケ襍ヲ縺上□縺輔>縲�</div><div><br></div><div>菫。蟾槫、ァ蟄ヲ逅�ュヲ驛ィ謨ー蟄ヲ遘托シ域收譛ャ繧ュ繝」繝ウ繝代せ�峨〒縺ッ縲∽ク榊ョ壽悄縺ォ菫。蟾槭ヨ繝昴Ο繧ク繝シ繧サ繝溘リ繝シ繧帝幕蛯ャ縺励※縺�∪縺吶ゅ%縺ョ蠎ヲ縲�2024蟷エ1譛�30譌・縺ォ縲�未隘ソ莉」謨ー繝医�繝ュ繧ク繝シ繧サ繝溘リ繝シ縺ィ縺ョ蜈ア蛯ャ縺ァ蟇セ髱「蠖「蠑上�繧サ繝溘リ繝シ繧剃ク玖ィ倥�隕��倥〒莠亥ョ壹@縺ヲ縺翫j縺セ縺吶ら嚀讒倥�縺泌盾蜉�繧偵♀蠕�■縺励※縺翫j縺セ縺吶�<br></div><div><br></div><div>================================</div><div><div><br></div><div>2024蟷エ1譛�30譌・�育↓��14:15--15:45 **髢「隘ソ莉」謨ー繝医�繝ュ繧ク繝シ繧サ繝溘リ繝シ縺ィ縺ョ蜈ア蛯ャ**</div><div>鬘檎岼��<span style="white-space:pre"> </span>A theory of plots</div><div>隰帶シ碑�シ�<span style="white-space:pre"> </span>螻ア蜿」 逹ヲ�亥、ァ髦ェ蜈ャ遶句、ァ蟄ヲ��</div><div>莨壼�エ��<span style="white-space:pre"> </span>逅�ュヲ驛ィA譽�4髫� 謨ー逅��閾ェ辟カ諠��ア蜷亥酔遐皮ゥカ螳、(A-401)</div><div>讎りヲ�シ�<span style="white-space:pre"> </span>The notion of plots in diffeology is introduced to define diffeological spaces which generalize differentiable manifolds. We observe that the notion of plots in diffeology has an easy generalization by replacing the site (O,E) of open sets of Euclidean spaces and open embeddings by a general Grothandieck site (C,J) and the forgetful functor U:O 竊� Set by a set valued functor F:C 竊� Set. In this talk, we show that the category of 窶徃eneralized窶� plots is a quasi-topos, namely it is (finitely) compltete and cocommplete, locally cartesian closed and has strong subobject classifier. We also show that groupoids associated with epimorphisms can be defined as in the text book 窶廛iffeology窶� by P.I-Zemmour so that we can develop the theory of fibration in the category of 窶徃eneralized窶� plots. Moreover, we mention the notion of F-topology which generalizes the D-topology in diffeology.</div><div><br></div><div>2024蟷エ1譛�30譌・�育↓��16:00--17:30 **髢「隘ソ莉」謨ー繝医�繝ュ繧ク繝シ繧サ繝溘リ繝シ縺ィ縺ョ蜈ア蛯ャ**</div><div>鬘檎岼��<span style="white-space:pre"> </span>Tight complexes are Golod</div><div>隰帶シ碑�シ�<span style="white-space:pre"> </span>蟯ク譛ャ 螟ァ逾撰シ井ケ晏キ槫、ァ蟄ヲ��</div><div>莨壼�エ��<span style="white-space:pre"> </span>逅�ュヲ驛ィA譽�4髫� 謨ー逅��閾ェ辟カ諠��ア蜷亥酔遐皮ゥカ螳、(A-401)</div><div>讎りヲ�シ�<span style="white-space:pre"> </span>Tightness of a simplicial complex is a combinatorial analogue of a tight embedding of a manifold into a Euclidean space, studied in differential geometry. Golodness is a property of a noetherian ring, defined in terms of the Poincare series of its Koszul homology, and Golodness of a simplicial complex is defined by that of the Stanley-Reisner ring. Recent results on polyhedral products suggest connection between these two notions for manifold triangulations, and in 2023, Iriye and I proved that they are equivalent for 3-dimensional manifold triangulations. In this talk, I will present that tight complexes are always Golod, which implies Golodness and tightness are equivalent for all manifold triangulations. I will also give a quick survey on the study of Golodness through polyhedral products.</div><div>This is a joint work with Kouyemon Iriye.</div></div><div><br></div><div>================================</div><div><br></div><div>諠��ア縺ョ譖エ譁ー縺ッ荳玖ィ� web 繝壹�繧ク縺ォ縺ヲ縺顔衍繧峨○縺�◆縺励∪縺吶�</div><div><br></div><div><a href="http://math.shinshu-u.ac.jp/~topology/seminar/">http://math.shinshu-u.ac.jp/~topology/seminar/</a></div><div><br></div><div>菫。蟾槭ヨ繝昴Ο繧ク繝シ繧サ繝溘リ繝シ縺ァ縺ッ縲∬ャ帶シ碑�r髫乗凾蜍滄寔縺励※縺翫j縺セ縺吶�</div><div>閾ェ阮ヲ繝サ莉冶岬縺ェ縺ゥ縺ゅj縺セ縺励◆繧峨√♀遏・繧峨○縺上□縺輔>縲�</div><div>繧医m縺励¥縺企。倥>縺励∪縺吶�</div><div><br></div><div>--</div><div><br></div><div>譚セ荳� 蟆壼シ假シ医∪縺、縺励◆繝サ縺溘°縺イ繧搾シ�</div><div>菫。蟾槫、ァ蟄ヲ逅�ュヲ驛ィ謨ー蟄ヲ遘�</div><div><a href="mailto:matsushita@shinshu-u.ac.jp">matsushita@shinshu-u.ac.jp</a></div></div></div></div></div>