<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">
Dear all, <br class="">
<br class="">
This is Xiaodan Zhou from Analysis on metric spaces unit at Okinawa Institute of Science and Technology Graduate University. <br class="">
<br class="">
We would like to invite you to join virtually the following mini-course hosted at OIST from August 22-24. No Prerequisites on BV functions on Euclidean spaces or knowledge of Carnot groups are needed to join the lectures. The lecture will provide introduction
 to these topics. <br class="">
<div class=""><br class="">
</div>
<div class="">
<div class="">
<div class=""><b class="">Time: </b></div>
<div class=""><span class="">Lecture 1-Mon, August 22, 2022  15:00 - 16:30</span></div>
<div class=""><span class="">Lecture 2-Tue,  August 23, 2022  15:00 - 16:30 </span></div>
<div class=""><span class="">Lecture 3-Wed, August 24, 2022  15:00 - 16:30          </span></div>
<div class=""><b class=""><br class="">
</b></div>
<div class=""><b class="">Speaker</b>: Dr. <a href="https://www.sebastiano272.eu/" class="">Sebastiano Nicolussi Golo</a>, University of Jyväskylä  (Finland)</div>
<div class=""><b class=""><br class="">
</b></div>
<div class=""><b class="">Title</b>: Functions of bounded variations in Carnot groups<br class="">
<b class="">Abstract:</b> </div>
<div class="">In this lectures I will present the theory of functions of bounded variation (BV functions) in Carnot groups. Carnot groups are Lie groups endowed with a fractal sub-Riemannian metric structure. The exposition will always reference to the classical
 theory of BV functions on Euclidean spaces (see for instance the monograph by Ambrosio-Fusco-Pallara). In this way, I expect that my lessons will be informative also for those who are familiar neither with BV functions on Euclidean spaces nor with Carnot groups.<br class="">
In particular, we will study sets of finite perimeter. The structure of sets of finite perimeter is a cornerstone of Geometric Measure Theory. We will see how it (does not yet) extend to Carnot groups.</div>
</div>
<div class=""><br class="">
</div>
<div class="">You can obtain a zoom link through the following registration page:</div>
<div class=""><a href="https://oist.zoom.us/meeting/register/tJIucu-vqjsqE9VRw1Hd07-T8YRQgV_EgXye" class="">https://oist.zoom.us/meeting/register/tJIucu-vqjsqE9VRw1Hd07-T8YRQgV_EgXye</a></div>
<div class=""><br class="">
</div>
<div class="">
<div class="">
<div class="">More information of the two mini-courses can be found here:<br class="">
</div>
<div class=""><a href="https://groups.oist.jp/aoms/event/mini-course-bv-functions-carnot-groups-speaker-dr-sebastiano-nicolussi-golo-university" class="">https://groups.oist.jp/aoms/event/mini-course-bv-functions-carnot-groups-speaker-dr-sebastiano-nicolussi-golo-university</a></div>
<div class=""><br class="">
</div>
<div class="">Please feel free to share the information with anyone who may in interested. We look forward to seeing you in the mini-courses. <br class="">
<br class="">
Best regards,<br class="">
Xiaodan Zhou<br class="">
-------------------------------<br class="">
<br class="">
Analysis on Metric Spaces Unit<br class="">
Okinawa Institute of Science and Technology Graduate University<br class="">
Okinawa 904-0495, Japan<br class="">
<a href="mailto:xiaodan.zhou@oist.jp" class="">xiaodan.zhou@oist.jp</a><br class="">
<br class="">
<a href="https://groups.oist.jp/aoms" class="">https://groups.oist.jp/aoms</a></div>
</div>
</div>
</div>
</body>
</html>