<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-2022-jp">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div><span class="elementToProof" style="font-size:12pt; color:#000000; font-family:Calibri,Arial,Helvetica,sans-serif">$B3F0L(B</span></div>
<span class="elementToProof" style="font-size:12pt; color:#000000; font-family:Calibri,Arial,Helvetica,sans-serif">
<div>
<div>
<div>
<div dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Arial,Helvetica,sans-serif">
<div>
<div></div>
</div>
</div>
</div>
</div>
</div>
($BK\%a!<%k$r=EJ#<u?.$5$l$?>l9g$O$4MF<O4j$$$^$9(B)</span>
<div>
<div>
<div>
<div dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Arial,Helvetica,sans-serif">
<div class="elementToProof">
<div class="elementToProof"><br>
</div>
<div>$BN)L?4[Bg3X?tM}2J3X2J$K=jB0$7$F$*$j$^$9B?Me4VBgJe$H?=$7$^$9!%(B</div>
<div>$B2<5-$NDL$j!$(B7$B7n(B8$BF|!J6b!K$KN)L?4[Bg3X4v2?3X%;%_%J!<$,(BZoom$B%_!<%F%#%s%0$K$h$kG[?.$K$F9T$o$l$^$9$N$G!$$*CN$i$;$$$?$7$^$9!%(B</div>
<div><br>
</div>
<div>$B;22C$K$O;vA0EPO?$,I,MW$G$9$N$G!$(B7$B7n(B7$BF|!JLZ!K$^$G$K2<5-$N(BURL$B$h$j$4EPO?$/$@$5$$!%(B</div>
<div>$B$4EPO?$$$?$@$$$?J}$KEvF|$*Ck$4$m$^$G$K(BZoom$B%_!<%F%#%s%0$N>pJs$,FO$-$^$9!%(B</div>
<div><br>
</div>
<div>$B3'MM$N$4;22C$r$*BT$A$$$?$7$F$*$j$^$9!%(B</div>
<div>$B$^$?!$$4<~JU$K%;%_%J!<$K6=L#$r$b$?$l$=$&$JJ}$,$*$i$l$^$7$?$i!$$3$N%a!<%k$rE>Aw$7$F$$$?$@$1$k$H=u$+$j$^$9!%(B</div>
<div>$B$I$&$>$h$m$7$/$*4j$$$$$?$7$^$9!%(B</div>
<div class="elementToProof"><br>
</div>
<div>$BB?Me4V(B $BBgJe(B</div>
<div><br>
</div>
<div>$B5-(B</div>
<div class="elementToProof"><br>
</div>
<div><<$BN)L?4[Bg3X4v2?3X%;%_%J!<(B>></div>
<div>$BF|;~!'(B2022$BG/(B7$B7n(B8$BF|!J6b!K(B 18:00$B!A(B19:00</div>
<div>$B%?%$%H%k!'(B Geometry of orbits of path group actions induced by Hermann actions</div>
<div class="elementToProof">$B9V1i<T!'(B $B?9K\(B $B??90(B $B!JBg:e8xN)Bg3X?t3X8&5f=j!K(B</div>
<div class="elementToProof">$B%"%V%9%H%i%/%H!'(B</div>
<div>As a generalization of submanifolds in Euclidean spaces, we can consider submanifolds in Hilbert spaces.
</div>
<div>In 1988, R. S. Palais and C.-L. Terng introduced a suitable class of submanifolds in Hilbert spaces, namely proper Fredholm (PF) submanifolds.
</div>
<div>By definition, the shape operators of PF submanifolds are compact self-adjoint operators.
</div>
<div>Moreover, the infinite dimensional differential topology and Morse theory can be applied to PF submanifolds.
</div>
<div>They gave examples of PF submanifolds which are orbits of the gauge group actions. After that, the relation between those actions and affine Kac-Moody algebras was studied by R. S. Palais, C.-L. Terng, E. Heintze and G. Thorbergsson.
</div>
<div>Later, E. Heintze introduced the concept of affine Kac-Moody symmetric spaces, which are infinite dimensional analogues of finite dimensional Riemannian symmetric spaces.
</div>
<div>In this talk, I will explain foundations of PF submanifolds and their relation to affine Kac-Moody symmetric spaces, and introduce my recent results concerning the submanifold geometry of orbits of gauge group actions.
</div>
<div class="elementToProof"><br>
</div>
<div class="elementToProof">$B3+:EJ}K!!'(B Zoom$B%_!<%F%#%s%0$GG[?.$$$?$7$^$9!%(B</div>
<div>$B2<5-$N(BURL$B$h$j(B7$B7n(B7$BF|!JLZ!K$^$G$K$4EPO?$/$@$5$$!%(B</div>
<div class="elementToProof">$B$4EPO?$$$?$@$-$^$7$?J}$K!$EvF|Ck:"$^$G$K!$(BZoom$B%_!<%F%#%s%0$N>pJs$r$*CN$i$;$$$?$7$^$9!%(B</div>
<div><br>
</div>
<div class="elementToProof">https://ritsumei-ac-jp.zoom.us/meeting/register/tJAlcuitqjsjEt24PyS7_DPy38IXbVBOD2yB</div>
<div class="elementToProof"><br>
</div>
<div>$BLd$$9g$o$;@h!'N)L?4[Bg3XM}9)3XIt?tM}2J3X2J(B</div>
<div class="elementToProof">$B!!!!!!!!!!!!!!B?Me4V(B $BBgJe(B</div>
<div>$B!!!!!!!!!!!!!!(Bdtarama [at] fc.ritsumei.ac.jp</div>
<div><br>
</div>
<div>************************************</div>
<div>Daisuke TARAMA</div>
<div>Department of Mathematical Sciences</div>
<div>Ritsumeikan University</div>
<div>Address: 1-1-1 Nojihigashi,</div>
<div>Kusatsu, Shiga, 525-8577, Japan</div>
<div>Office: West Wing (WW) 606</div>
<div>E-mail: dtarama [at] fc.ritsumei.ac.jp</div>
************************************ <br>
</div>
<p style="margin-top: 0px; margin-bottom: 0px;"></p>
</div>
</div>
</div>
</div>
</body>
</html>