<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-2022-jp">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
$B4v2?3X%a!<%j%s%0%j%9%H$N3'MM!'(B</div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<div><br>
</div>
<div>$B6e=#Bg3X%^%9!&%U%)%"!&%$%s%@%9%H%j8&5f=j$N<44]K'4x$H?=$7$^$9!%(B</div>
<div>$B3+:ED>A0$H$J$C$F$7$^$$$^$7$?$,!$2<5-$NMWNN$G%O%$%V%j%C%I7A<0$K$F%;%_%J!<$r3+:E$7$^$9$N$G!$$*CN$i$;CW$7$^$9!%(B</div>
<div><br>
</div>
<div>********************************************</div>
<div>(English follows.)</div>
<div>$BBh(B8$B2s(B $B0KET(BCREST ED3GE$B%;%_%J!<(B</div>
<div><br>
</div>
<div>$BF|;~!'(B2022$BG/(B6$B7n(B10$BF|(B($B6b(B) 10:30-12:00</div>
<div>$B7A<0!'%O%$%V%j%C%I3+:E!JBPLL(B+Zoom$B$K$h$kG[?.!K(B</div>
<div>$B>l=j!'6e=#Bg3X0KET%-%c%s%Q%9%&%(%9%H(B1$B9f4[(BC512$BCf9V5A<<(B</div>
<div>$B9V1i<T!'(BKatrin Leschke (University of Leicester)</div>
<div>$B%?%$%H%k!'(B Closing conditions for smooth and discrete curves and surfaces</div>
<div>$B35MW!'(B For geometric objects, whose compatibility equations form an integrable system,</div>
<div>one can find solutions by introducing a spectral parameter and solving a linear system.</div>
<div>I will use the examples of polarised curves and constant mean curvature surfaces to explain</div>
<div>how the associated family of flat connections can be used to construct new,</div>
<div>closed polarised curves and new closed constant mean curvature surfaces.</div>
<div>When discretising the associated family, we obtain corresponding results in the discrete case.</div>
<div><br>
</div>
<div>CREST ED3GE$B%;%_%J!<%&%'%V%Z!<%8!'(B</div>
<div>http://ed3ge.imi.kyushu-u.ac.jp/event/index.html#seminar</div>
<div><br>
</div>
<div>Zoom$B@\B3>pJs(B:</div>
<div>https://us06web.zoom.us/j/89435655153?pwd=QWEvU2lGaEFERklBQUczTjhGWCtidz09</div>
<div>$B%_!<%F%#%s%0(BID: 894 3565 5153</div>
<div>$B%Q%9%3!<%I(B: 178215</div>
<div><br>
</div>
<div>8th Ito CREST ED3GE Seminar</div>
<div><br>
</div>
<div>Date: June 10th (Fri.), 10:30-12:00</div>
<div>Venue: Kyushu University, Ito Campus, W1-C512 and Online (Zoom)</div>
<div>Speaker: Katrin Leschke (University of Leicester)</div>
<div>Title: Closing conditions for smooth and discrete curves and surfaces</div>
<div>Abstract: For geometric objects, whose compatibility equations form an integrable system,</div>
<div>one can find solutions by introducing a spectral parameter and solving a linear system.</div>
<div>I will use the examples of polarised curves and constant mean curvature surfaces to explain</div>
<div>how the associated family of flat connections can be used to construct new,</div>
<div>closed polarised curves and new closed constant mean curvature surfaces.</div>
<div>When discretising the associated family, we obtain corresponding results in the discrete case.</div>
<div><br>
</div>
<div>CREST ED3GE seminar webpage$B!'(B</div>
<div>http://ed3ge.imi.kyushu-u.ac.jp/event/index.html#seminar</div>
<div><br>
</div>
<div>Zoom Information:</div>
<div>https://us06web.zoom.us/j/89435655153?pwd=QWEvU2lGaEFERklBQUczTjhGWCtidz09</div>
<div>Meeting ID: 894 3565 5153</div>
<div>Passcode: 178215</div>
<div>********************************************</div>
<div><br>
</div>
<div>$B;22CEPO?EyITMW$G$9$N$G!$3'MM$N$4;22C$r?4$h$j$*BT$A?=$7>e$2$F$*$j$^$9!%(B</div>
<div>$B0J>e!$$I$&$>$h$m$7$/$*4j$$?=$7>e$2$^$9!%(B</div>
<div><br>
</div>
<div>===========================</div>
<div>$B<44](B $BK'4x(B / Yoshiki JIKUMARU (Ph.D.)</div>
<div>Institute of Mathematics for Industry, Kyushu University</div>
<div><E-mail: y-jikumaru@imi.kyushu-u.ac.jp ></div>
<div>===========================</div>
<br>
</div>
</body>
</html>