<div dir="ltr"><span class="gmail-im"></span><span class="gmail-im">みなさま、</span><span class="gmail-im"></span><div><span class="gmail-im"><br></span></div><div><span class="gmail-im">以下の通り、対面のセミナーを行います。</span></div><div><span class="gmail-im"><span class="gmail-im"><a href="https://pc1.math.gakushuin.ac.jp/~hosono/GWGS/GWGS.html">https://pc1.math.gakushuin.ac.jp/~hosono/GWGS/GWGS.html</a></span></span></div><div><span class="gmail-im"><span class="gmail-im"><br></span></span></div><div><span class="gmail-im"><span class="gmail-im">ご興味のある方は、是非ご参加ください。</span></span></div><div><span class="gmail-im"><span class="gmail-im"><br></span></span></div><div><span class="gmail-im"><span class="gmail-im">山田澄生<br></span></span></div><div><span class="gmail-im"><br></span></div><div><span class="gmail-im">/////////////////////////////////////////////<br></span></div><div><span class="gmail-im">2022年6月8日(水)16:00~17:30<span class="gmail-im"><br></span></span></div><div><span class="gmail-im">講演者: John Loftin (Rutgers University)</span></div><div><span class="gmail-im"></span></div><span class="gmail-im"><br>題目: <span style="margin:0px;background-color:rgb(255,255,255)">Cubic Differentials, Harmonic Maps, and Real Buildings</span><br>於:学習院大学 南1号館103教室<br><br></span><div><span class="gmail-im">概要:Consider a Riemann surface S of genus g at least 2 equipped with a
holomorphic cubic differential U. This pair (S,U) induces, via the
theory of Higgs bundles, a rank-3 bundle with a flat
connection, which induces a representation of the fundamental group
into SL(3,R), and these representations comprise the Hitchin component.
In addition, there is a harmonic map, equivariant under this
representation, from the universal cover of S into the
symmetric space SL(3,R)/SO(3). This parametrization of the Hitchin
component is not explicit but involves the a system of PDEs. For
nonzero U, we study the case sU as s approaches infinity. In
particular, we show the geometry in this limit can be read off
explicitly from U, in terms of an embedding of the universal cover of S
into the real building given by the asymptotic cone of the symmetric
space SL(3,R)/SO(3). We are able to provide explicit pictures for most
triangle groups.</span></div><div><span class="gmail-im"><br></span></div><div><span class="gmail-im"><br></span></div></div>