<div dir="ltr"><div>みなさま、</div><div><br></div><div>学習院大物理学科の田崎晴明先生から、以下の案内をいただきましたので、本mlで共有させていただきます。</div><div><br></div><div>山田澄生</div><div>///////////////////////////////////////////////</div><div><br></div><div>Suject: IAMP seminar / Nicolai Reshetikhin / Dec. 14, 23:00 (JST)</div>
<br>
One World Mathematical Physics Seminar は、コロナ禍を受けて IAMP (International<br>
Association of Mathematical Physics) が企画しているオンラインのセミナーシリーズです。<br>
これまでのセミナーは全て録画され以下で公開されています。<br>
<a href="https://www.youtube.com/channel/UCxeiraz5cxmNXe2NN8qpbZQ/videos" rel="noreferrer" target="_blank">https://www.youtube.com/channel/UCxeiraz5cxmNXe2NN8qpbZQ/videos</a><br>
<br>
12/14 日(火曜)の日本時間深夜 11 時からのセミナーでは、量子群の提唱など様々な業績で知られる Nicolai Reshetikhin 氏が登壇します。主催者から送られたアブストラクトとリンク情報を以下に転載します。ご興味のある方の参加を歓迎いたします。<br>
<br>
田崎晴明<br>
<br>
============<br>
<br>
Nicolai Reshetikhin (University of California, Berkeley)<br>
<br>
On the asymptotic behavior of character measures in large tensor<br>
powers of finite dimensional representations of simple Lie algebras<br>
<br>
Let $V$ be a finite dimensional representation of a simple Lie algebra<br>
and $H$ be an positive element of its Cartan subalgebra ("magnetic<br>
field"). On the space $V^{\otimes N}$ we have a natural density matrix<br>
$N\exp(-H)$where $H$ acts diagonally: $H(x\otimes y\otimes z\dots)=H<br>
x\otimes y\otimes z\dots +x\otimes H y\otimes z\dots+x\otimes y\otimes<br>
H z\dots$. The space $V^{\otimes N}$ decomposes into a direct<br>
sum of irreducible subrepresentations:<br>
\[<br>
V^{\otimes N}\simeq \oplus_{\lambda} V_\lambda^{\oplus m(\lambda, N)}<br>
\]<br>
where $\lambda$ is the highest weight of the representation<br>
$V_\lambda$ and $m(\lambda, N)$<br>
is its multiplicity in the tensor product. The character distribution<br>
assigns the probability<br>
\[<br>
p_{\lambda}(N,H)=\frac{m(\lambda, N)Tr_{V_\lambda}(e^{-H)})}{(Tr_V(e^{-H}))^N}<br>
\]<br>
to each $\lambda$ in the decomposition of the tensor product.<br>
<br>
One of the natural problems for this distribution is to find its asymptotic<br>
in the limit $N\to \infty$ and $\lambda\to \infty$ in the appropriate way.<br>
When $H=0$ the character distribution becomes a uniform distribution.<br>
In this case, in such generality the asymptotic was studied by Ph.<br>
Biane, 1993 by T. Tate and S. Zelditch, 2004. For tensor powers of<br>
vector representations the asymptotic was derived by S. Kerov in 1986.<br>
When $H$ is generic, i.e. when $H$ is strictly inside of the principal<br>
Weyl chamber it was computed by O.Postnova and N.R. in 2018. This talk<br>
is based on a joint work with O. Postnova and V. Serganova (to appear<br>
on the arxiv).<br>
<br>
<br>
Livestream link will appear here 15 min before the talk:<br>
<a href="https://researchseminars.org/talk/IAMP_seminars/77/" rel="noreferrer" target="_blank">https://researchseminars.org/talk/IAMP_seminars/77/</a><br>
<br>
The schedule of upcoming and past seminars can be found here:<br>
<a href="http://www.iamp.org/page.php?page=page_seminar" rel="noreferrer" target="_blank">http://www.iamp.org/page.php?page=page_seminar</a><br>
<br>
Best regards,<br>
Jan Dereziński, Marcello Porta, Kasia Rejzner and Daniel Ueltschi<br>
<br>
============<font color="#888888"><br>
<br>
<br>
</font></div>