<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-2022-jp">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
<span style="font-size:12pt">$B3F0L(B</span></div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
<div style="font-size:12pt">
<div>($BK\%a!<%k$r=EJ#<u?.$5$l$?>l9g$O$4MF<O4j$$$^$9(B)</div>
<div><br>
</div>
<div>$BN)L?4[Bg3X?tM}2J3X2J$K=jB0$7$F$*$j$^$9B?Me4VBgJe$H?=$7$^$9!%(B</div>
<div>$B2<5-$NDL$j!$(B11$B7n(B29$BF|!J7n!K$KN)L?4[Bg3X4v2?3X%;%_%J!<$,9T$o$l$^$9$N$G!$$*CN$i$;$$$?$7$^$9!%(B</div>
<div><br>
</div>
<div>$B;22C$K$O;vA0EPO?$,I,MW$G$9$N$G!$(B11$B7n(B28$BF|!JF|!K$^$G$K2<5-$N(BURL$B$h$j$4EPO?$/$@$5$$!%(B</div>
<div>$B$4EPO?$$$?$@$$$?J}$KEvF|$*Ck$4$m$^$G$K(BZoom$B%_!<%F%#%s%0$N>pJs$,FO$-$^$9!%(B</div>
<div><br>
</div>
<div>$B3'MM$N$4;22C$r$*BT$A$$$?$7$F$*$j$^$9!%(B</div>
<div>$B$^$?!$$4<~JU$K%;%_%J!<$K6=L#$r$b$?$l$=$&$JJ}$,$*$i$l$^$7$?$i!$$3$N%a!<%k$rE>Aw$7$F$$$?$@$1$k$H=u$+$j$^$9!%(B</div>
<div>$B$I$&$>$h$m$7$/$*4j$$$$$?$7$^$9!%(B</div>
<div><br>
</div>
<div>$BB?Me4V(B $BBgJe(B</div>
<div><br>
</div>
<div><br>
</div>
<div>$B5-(B</div>
<div><br>
</div>
<div><<$BN)L?4[Bg3X4v2?3X%;%_%J!<(B>></div>
<div>$BF|;~!'(B2021$BG/(B11$B7n(B29$BF|!J7n!K(B 16:30$B!A(B17:30</div>
<div>$B%?%$%H%k!'(BObstructions to integrability of nearly integrable dynamical systems near regular level sets</div>
<div>$B9V1i<T!'K\1J(B $BfFLi(B $B!J5~ETBg3XBg3X1!>pJs3X8&5f2J!K(B</div>
<div>$B%"%V%9%H%i%/%H!'(B</div>
<div>We consider analytical, nearly integrable systems which may be non-Hamiltonian, and discuss their nonintegrability in the non-Hamiltonian sense. We give a sufficient condition for them to be analytically nonintegrable such that the commutative vector fields
 and first integrals depend on the perturbation parameter analytically. This improves the previous results of Poincare and Kozlov. We apply our result to time-periodic perturbations of single-degree-of-freedom systems and discuss a relationship of our result
 with the subharmonic and homoclinic Melnikov methods. This is joint work with Kazuyuki Yagasaki (Kyoto University).</div>
<div><br>
</div>
<div>$B3+:EJ}K!!'(B Zoom$B%_!<%F%#%s%0$G$N3+:E$G$9!%(B</div>
<div>$B2<5-$N(BURL$B$h$j(B11$B7n(B28$BF|!JF|!K$^$G$K$4EPO?$/$@$5$$!%(B</div>
<div>$BDI$C$F!$(BZoom$B%_!<%F%#%s%0$N>pJs$r$*CN$i$;$$$?$7$^$9!%(B</div>
<div><br>
</div>
<div>https://ritsumei-ac-jp.zoom.us/meeting/register/tJ0vcumtrzoqHtTnAxgxd1fr0hiSNOyrAXv5</div>
<div><br>
</div>
<div>$BLd$$9g$o$;@h!'N)L?4[Bg3XM}9)3XIt?tM}2J3X2J(B</div>
<div>$B!!!!!!!!!!!!!!B?Me4V(B $BBgJe(B</div>
<div>$B!!!!!!!!!!!!!!(Bdtarama [at] fc.ritsumei.ac.jp</div>
<div><br>
</div>
<div><br>
</div>
<div>************************************</div>
<div>Daisuke TARAMA</div>
<div>Department of Mathematical Sciences</div>
<div>Ritsumeikan University</div>
<div>Address: 1-1-1 Nojihigashi,</div>
<div>Kusatsu, Shiga, 525-8577, Japan</div>
<div>Office: West Wing (WW) 606</div>
<div>E-mail: dtarama [at] fc.ritsumei.ac.jp</div>
************************************</div>
</div>
</body>
</html>