<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8" /></head><body><div data-html-editor-font-wrapper="true" style="font-family: arial, sans-serif; font-size: 13px;">幾何学分科会の皆様<br><br>北海道大学の泉屋です。12月中に実施される、応用特異点論ラボ・セミナーのお知らせです。<br><br><a target="_blank" rel="external nofollow noopener noreferrer" tabindex="-1" href="https://sites.google.com/site/appliedsingularitytheorylab">https://sites.google.com/site/appliedsingularitytheorylab</a><br><br><br><br>1)<dl> <dt>開催日時</dt> <dd>2019年 12月 11日 15時 00分 ~ 2019年 12月 11日 16時 30分</dd> <dt>場所</dt> <dd>理学部4号館4-501教室</dd> <dt>講演者 </dt> <dd>Farid Tari (ISMC-SUP, Sao Carlos, Brazil)</dd> <dt> </dt> <dd> <b>タイトル:</b> <br>On hidden symmetries of surfaces in Euclidean 3-space <br>(Joint work with Guillermo Penafort Sanchis) <br><br><b>アブストラクト:</b> <br>We consider the singularities of reflection maps on surfaces in Euclidean 3-space. We show that reflection maps of any order capture aspects of the extrinsic differential geometry of a surface which were already obtained by considering the contact of the surface with planes, lines and spheres. When the order of the reflections is three, we obtain a new curve along which the surface has more hidden symmetry with respect to such reflections. Our study shows that the sub-parabolic and ridge curves where the surface has more symmetry with respect to reflection maps of order two (the so-called folding maps) is also true with respect to reflections of any order, the difference being that when the order k≥3k≥3, the symmetry is a hidden one. We also consider in this paper the envelope of planes normal to a given asymptotic direction and equivalence relations compatible with reflections. <br><br>2)</dd> <dt>開催日時</dt> <dd>2019年 12月 11日 16時 45分 ~ 2019年 12月 11日 18時 15分</dd> <dt>場所</dt> <dd>理学部4号館4-501教室</dd> <dt>講演者 </dt> <dd>David Brander (Technical University of Denmark)</dd> <dt> </dt> <dd> <b>タイトル:</b> <br>Harmonic maps, pseudospherical surfaces and singularities <br><br><b>アブストラクト:</b> <br>The Gauss map of a constant negative curvature surface in 3-space is harmonic with respect to the Lorentzian metric induced by the second fundamental form. Conversely, any Lorentzian harmonic map into the 2-sphere gives rise to a surface (with some singularities) of constant negative curvature. <br><br>I will talk about some recent work (joint with F. Tari) on the singularities of these maps, including how to construct the generic singularities and bifurcations using loop groups. <br><br>3)</dd> <dt>開催日時</dt> <dd>2019年 12月 20日 15時 30分 ~ 2019年 12月 20日 16時 30分</dd> <dt>場所</dt> <dd>理学部3号館3-204室</dd> <dt>講演者 </dt> <dd>Alexey Remizov (Moscow Institute of Physics and Technology)</dd> <dt> </dt> <dd> <b>タイトル:</b> Implicit differential equations and vector fields with non-isolated singular points <br><b>アブストラクト:</b> In this talk, I am planning to explain how vector fields with non-isolated singular points appear and how their typical phase portraits look like. A natural source of vector fields whose singular points fill a submanifold of codimension two is multidimensional Implicit Differential Equations (i.e., systems of ordinary differential equations not solvable for the derivatives). I am planning to give a survey of the main results in this subject and formulate some open problems. <br><br>なお,同日17:00から<a target="_blank" href="http://www.math.sci.hokudai.ac.jp/seminar-index/geometrycolloquium191220b.php">幾何学コロキウム:On singularities of simple waves(Dmitry Tunitsky氏,V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences)</a>が開催されます. <br><br>4)</dd> <dt>開催日時</dt> <dd>2019年 12月 20日 17時 00分 ~ 2019年 12月 20日 18時 00分</dd> <dt>場所</dt> <dd>理学部3号館3-204室</dd> <dt>講演者 </dt> <dd>Dmitry Tunitsky (V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences)</dd> <dt> </dt> <dd> <b>タイトル:</b> On singularities of simple waves <br><b>アブストラクト:</b> The talk concerns multivalued simple waves who are geometric solutions of quasilinear hyperbolic wave equation. Projections of such solutions to the plane of independent variables are not one-to-one mappings. We give classification of singularities of these projections. <br><br>なお,同日15:30から<a target="_blank" href="http://www.math.sci.hokudai.ac.jp/seminar-index/geometrycolloquium191220a.php">幾何学コロキウム:Implicit differential equations and vector fields with non-isolated singular points(Alexey Remizov氏,Moscow Institute of Physics and Technology)</a>が開催されます.</dd> </dl> </div></body></html>