<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-2022-jp">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<span>$B3F0L(B<br>
<div>$B!JEv%a!<%k$r=EJ#<u?.$5$l$?:]$O$4MF<O$/$@$5$$!K(B<br>
<div><br>
<div>$BN)L?4[Bg3X?tM}2J3X2J$K=jB0$7$F$*$j$^$9B?Me4VBgJe$H?=$7$^$9!%(B<br>
<div>$B2<5-$NDL$j!$(B12$B7n(B9$BF|!J7n!K$KN)L?4[Bg3X4v2?3X%;%_%J!<$,9T$o$l$^$9$N$G!$$*CN$i$;$$$?$7$^$9!%(B<br>
<div>$B3'MM$N$4;22C$r$*BT$A$$$?$7$F$*$j$^$9!%(B<br>
<div>$BD>A0$N$4O"Mm$G?=$7Lu$4$6$$$^$;$s$,!$$I$&$>$h$m$7$/$*4j$$$$$?$7$^$9!%(B<br>
<div><br>
<div>$BB?Me4V(B $BBgJe(B<br>
<div><br>
<div><br>
<div>$B5-(B<br>
<div><br>
<div><br>
<div><br>
<div><<$BN)L?4[Bg3X4v2?3X%;%_%J!<(B>><br>
<div><br>
<div>$BF|;~!'(B2019$BG/(B12$B7n(B9$BF|!J7n!K(B 16:30$B!A(B17:30<br>
<div><br>
<div>$B%?%$%H%k!'(BBV structures on moduli spaces of flat connections
<div><br>
<div>$B9V1i<T!'(B<span>Pavol Severa $B!J(BUniversity of Geneva$B!K(B</span><br>
<div>
<div>
<div><br>
<div>$B%"%V%9%H%i%/%H!'(B<br>
<div><span>Loops (or rather their homotopy classes) on an oriented surface form a Lie algebra, originally discovered by Goldman.
<br>
</span>
<div>The Lie bracket is given by a simple formula involving intersection points of two loops.
<br>
</div>
<div>This Lie algebra can be interpreted as the Poisson bracket on a moduli space of flat connections (given by the famous Atiyah-Bott symplectic form), if to each loop we assign the trace of the holonomy along the loop.
<br>
</div>
<div>Loops come also with another operation, a Lie cobracket discovered by Turaev, given by a very similar formula.
<br>
</div>
<div>I will explain what is the corresponding geometric structure on the moduli space.
<br>
</div>
<div>I will also try to explain why this structure is interesting and how it relates to the Kashiwara-Vergne problem in Lie theory.
<br>
</div>
<span>Based on a joint work in progress with Anton Alekseev, Florian Naef, and Jan Pulmann.</span>
<div>
<div>
<div>
<div>
<div>
<div><br>
<div>$B>l=j!'N)L?4[Bg3X$S$o$3!&$/$5$D%-%c%s%Q%9!J(BBKC$B!K(B<br>
<div> $B!!%&%'%9%H%&%#%s%0(B 6$B3,(B $BCLOC2q<<(B<br>
<div><br>
<div> $B!!2q>l$X$N%"%/%;%9!&%-%c%s%Q%9%^%C%W$O0J2<$r$4Mw$/$@$5$$"-(B<br>
<div> $B!!(Bhttp://www.ritsumei.ac.jp/accessmap/bkc/<br>
<div> $B!!(Bhttp://www.ritsumei.ac.jp/campusmap/bkc/<br>
<div> $B!!(Bhttp://www.ritsumei.ac.jp/file.jsp?id=227632&f=.pdf<br>
<div><br>
<div>$BLd$$9g$o$;@h!'N)L?4[Bg3XM}9)3XIt?tM}2J3X2J(B<br>
<div>     $B!!B?Me4V(B $BBgJe(B<br>
<div>     $B!!(Bdtarama [at] fc.ritsumei.ac.jp<br>
<div><br>
<div><br>
<div>************************************<br>
<div>Daisuke TARAMA<br>
<div>Department of Mathematical Sciences<br>
<div>Ritsumeikan University<br>
<div>Address: 1-1-1 Nojihigashi,<br>
<div>Kusatsu, Shiga, 525-8577, Japan<br>
<div>Office: West Wing (WW) 606<br>
<div>E-mail: dtarama [at] fc.ritsumei.ac.jp<br>
<span>************************************ </span></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</span>
</body>
</html>