<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div dir="ltr"><span></span></div><div dir="ltr"><meta http-equiv="content-type" content="text/html; charset=utf-8"><div dir="ltr"><span></span></div><div dir="ltr"><meta http-equiv="content-type" content="text/html; charset=utf-8"><div dir="ltr"><span></span></div><div dir="ltr"><meta http-equiv="content-type" content="text/html; charset=utf-8"><div dir="ltr"></div><div dir="ltr"></div><span style="background-color: rgba(255, 255, 255, 0);">幾何学分科会メーリングリストの皆様、<br><br>慶應義塾大学の河備 浩司先生より、下記の研究集会の広報の依頼を受けましたので転送いたします。<br><br>高津飛鳥<br></span><div dir="ltr"><br></div><div dir="ltr">-------------------------------------------------------------------------------------------------<br><div><br><blockquote type="cite"><div><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div><div><meta http-equiv="Content-Type" content="text/html charset=utf-8"><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div></div></div></div></div></div></div></blockquote><div><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div>幾何学MLの皆様</div><div><br></div><div>(重複して受け取られる方もいらっしゃいますでしょうが,</div><div><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div></div></div><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div><div>ご容赦ください。)</div></div></div><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;"><div><br></div><div>11月23日 (金)に研究集会</div><div>「Tokyo one-day workshop on stochastic analysis and geometry」を</div><div>東京大学で開催しますので, ご案内致します。</div></div></div></div><div><br><div>なお講演終了後に渋谷周辺にて懇親会を予定しております。</div><div>人数を把握したいと思いますので, ご参加いただける方は</div><div>11月16日 (金) までに河備までメールでお知らせください。</div><div><br></div><div>皆様のご参加をお待ち致しております。</div><div><br></div><div>連絡先:</div><div>会田 茂樹 (東京大学大学院数理科学研究科 aida (AT) <a href="http://ms.u-tokyo.ac.jp/">ms.u-tokyo.ac.jp</a> )</div><div>河備 浩司 (慶應義塾大学経済学部 kawabi (AT) <a href="http://keio.jp/">keio.jp</a> )</div><br>/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////<br>研究集会「Tokyo one-day workshop on stochastic analysis and geometry」<br><br>日時:2018年11月23日(金: 祝日)13:00~17:40<br>場所:東京大学大学院数理科学研究科126号室<br><br> プログラム</div><div><br></div><div>13:00~14:00 厚地 淳 (慶應義塾大学)</div><div> Default functions and value distribution of holomorphic maps</div><div><br></div><div>14:10~15:10 Robert Neel (Lehigh University, USA)</div><div> Minimal submanifolds and surfaces and associated martingales</div><div><br></div><div>15:30~16:30 正宗 淳 (北海道大学)</div><div> On convergence of elliptic operators on a Riemannian manifold</div><div><br></div><div>16:40~17:40 会田 茂樹 (東京大学)</div><div> Weak Poincare inequalities on path spaces: non-explosion case</div><div><br></div><div>///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////</div><div><br></div><div>厚地氏の講演概要:</div><div>Recently default functions are playing important roles in the theory of </div><div>mathematical finance. We consider another aspect of the functions, </div><div>specially we consider a
function theoretic aspect. We show the vanishing of </div><div>default functions of the Dirichlet
processes generated by a class of subharmonic </div><div>functions implies Liouville type theorems. Consequently we will see some value </div><div>distributional properties of holomorphic maps. </div><div>----------------------------------------------------------------------------------------------------</div><div><br></div><div>Neel氏の講演概要:</div><div>We first discuss a class of degenerate martingales (which we will call rank-n </div><div>martingales) that arises naturally as the diffusion associated with </div><div>minimal submanifolds
and, more generally, mean curvature flow. </div><div>This provides a unified approach to “coarse”
properties, such as transience, </div><div>of such structures, via methods which naturally generalize
those used to study </div><div>the long-time behavior of Brownian motion on Cartan-Hadamard
manifolds. </div><div>We then specialize to minimal surfaces in R^{3}, in which case the associated </div><div>rank-2 martingale (which is just Brownian motion on the surface, viewed as </div><div>a process in R^{3}) has the additional property that the tangent plane also </div><div>evolves as a martingale. Taking
advantage of this extra structure, we develop </div><div>an extrinsic analogue of the mirror coupling
of two Brownian motions. </div><div>This allows us to study finer geometric and analytic properties
of minimal surfaces, </div><div>such as intersection results (strong halfspace-type theorems) and
Liouville properties. </div><div>----------------------------------------------------------------------------------------------------</div><div><br></div><div>正宗氏の講演概要:</div><div>In this talk we study the asymptotic behavior of second-order uniformly </div><div>elliptic operators on weighted Riemannian manifolds. We appeal to the notion of </div><div>H-convergence introduced by Murat and Tartar. In our main result we establish </div><div>an H-compactness result that applies to elliptic operators with measurable, </div><div>uniformly elliptic
coefficients on weighted Riemannian manifolds. </div><div>This is a joint work with Helmer Hoppe
and Stefan Neukamm. </div><div>----------------------------------------------------------------------------------------------------</div><div><br></div><div>会田氏の講演概要:</div><div>We prove weak Poincare inequalities on path spaces over a complete </div><div>Riemannian manifolds. Feng-Yu Wang and his collaborators proved </div><div>the inequality under certain
assumption on the Ricci curvature which </div><div>implies naturally non-explosion of the Brownian motion. </div><div>We explain how to prove such an inequality under the non-explosion </div><div>of the
Brownian motion. </div><div>----------------------------------------------------------------------------------------------------</div><div><br></div><div><br></div></div></div></div></div></div></div></div></div></body></html>