<div dir="ltr"><div><div style="font-size:14px"><font face="arial, helvetica, sans-serif">皆様</font></div><div style="font-size:14px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:14px"><div><font face="arial, helvetica, sans-serif">今年度,第二回目<span class="gmail-il">の</span>明治大<span class="gmail-il">学</span><span class="gmail-il">幾何</span><span class="gmail-il">学</span><span class="gmail-il">セミナ</span>ーを以下<span class="gmail-il">の</span>要領で開催致<wbr>します<span class="gmail-il">の</span>で<span class="gmail-il">お知らせ</span>致します.</font></div><div><font face="arial, helvetica, sans-serif"><br></font></div><div><font face="arial, helvetica, sans-serif">日程:2017年10月6日(金)13:30-15:10</font></div><div><font face="arial, helvetica, sans-serif">場所:明治大<span class="gmail-il">学</span>生田キャンパス 第二校舎6号館6706</font></div><div><font face="arial, helvetica, sans-serif"><br></font></div><div><font face="arial, helvetica, sans-serif">講演者:原田 芽ぐみ氏(McMaster大<span class="gmail-il">学/大阪市立大学</span>)</font></div><div><font face="arial, helvetica, sans-serif"><br></font></div><div><font face="arial, helvetica, sans-serif">講演題目:</font><span style="font-size:12.800000190734863px">The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture</span></div><div><font face="arial, helvetica, sans-serif"><br></font></div><div><font face="arial, helvetica, sans-serif">概要:</font><span style="font-size:12.800000190734863px">The famous Stanley-Stembridge conjecture in combinatorics states that the chromatic symmetric function of the incomparability graph of a so-called (3+1)-free poset is e-positive. In this talk, we briefly discuss this conjecture, and explain how recent work of Shareshian-Wachs, Brosnan-Chow, among others, makes a rather surprising connection between this conjecture and the geometry and topology of Hessenberg varieties, together with a certain symmetric-group representation on the cohomology of Hessenberg varieties. In particular, it turns out the Stanley-Stembridge conjecture would follow if it can be proven that the cohomology of regular semisimple Hessenberg varieties (in Lie type A) are permutation representations of a certain form. I will then describe joint work with Martha Precup which proves this statement for the special case of abelian Hessenberg varieties, the definition of which is inspired by the theory of abelian ideals in a Lie algebra, as developed by Kostant and Peterson.  Our proof relies on the incomparability graph of a Hessenberg function and previous combinatorial results of Stanley, Gasharov, and Shareshian-Wachs, as well as previous results on the geometry and combinatorics of Hessenberg varieties of Martha Precup.</span></div><div><font face="arial, helvetica, sans-serif"><br></font></div></div><div style="font-size:14px"><div><span style="border-collapse:collapse"><font face="arial, helvetica, sans-serif"><div><br></div><div>興味を持たれそうな方がおられましたら周知してくださいますと幸<wbr>いです.皆様<span class="gmail-il">の</span>ご参加をお待ちしております.</div><div><br></div></font></span></div><div><font face="arial, helvetica, sans-serif"><span class="gmail-il">幾何</span><span class="gmail-il">セミナ</span>ー<span class="gmail-il">の</span>ホームページ:</font></div><div><a href="http://www.isc.meiji.ac.jp/~takahiko/GeometrySeminar/index.html" target="_blank"><font face="arial, helvetica, sans-serif">http://www.isc.meiji.ac.jp/~<wbr>takahiko/GeometrySeminar/<wbr>index.html</font></a></div></div></div><div><br></div><br clear="all"><div><div class="gmail_signature"><div dir="ltr">吉田尚彦<div>明治大学理工学部数学科</div><div>Takahiko Yoshida</div><div>Department of Mathematics</div><div>School of Science and Technology</div><div>Meiji University</div></div></div></div>
</div>