<html>
<head>
<meta content="text/html; charset=iso-2022-jp"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
$B$3$N$*CN$i$;$r=EJ#$7$F<u$1<h$i$l$?J}$O$4MF<O$/$@$5$$!#(B<br>
<br>
$B?.=#Bg3XM}3XIt(B $B?t3X2J!J>>K\%-%c%s%Q%9!K$G$O!"(B<br>
$BITDj4|$G?.=#%H%]%m%8!<%;%_%J!<$r3+:E$7$F$$$^$9!#(B<br>
$B2<5-$N$h$&$K!"K\G/EYBh(B10$B2s$N?.=#%H%]%m%8!<%;%_%J!<$,3+:E$5$l$^$9!#(B<br>
$B!J2a5n$N5-O?$K$D$-$^$7$F$O!"2<5-(BURL$B$r$4Mw$/$@$5$$!K(B<br>
<br>
================================<br>
$B"#(B 2016$BG/(B1$B7n(B22$BF|!J6b!K(B16:30$B!A(B18:00 $B"#(B<br>
$BBjL\!'%H%m%T%+%k6K8B$N<~$j$N4v2?3XE*%b%N%I%m%_!<(B<br>
$B9V1i<T!';3K\(B $BM*EP(B $B;a!JEl5~Bg3XBg3X1!?tM}2J3X8&5f2J!K(B<br>
$B2q>l!'M}3XIt(B A $BEo(B 4 $B3,(B $B?tM}965f<<(B (A-427)<br>
$B35MW!'(B<br>
<strong>
</strong>$B%H%m%T%+%k4v2?3X$K$*$1$k<g$J8&5fBP>]$O!$$"$k<o$N%"%U%!%$%s9=B$$r;}$DB?LLJ#BN$H$7$FDj5A$5$l$k%H%m%T%+%kB?MMBN$G$"$k!%(B<br>
<div class="a3s" id=":z3" style="overflow: hidden;"> $BJ#AGBe?tB?MMBN$N0lJQ?tB2(B
$\{X_q\}_q$ $B$KBP$7$F!$%H%m%T%+%k2=$H8F$P$l$kJ}K!$G!$%H%m%T%+%kB?MMBN(B $T$ $B$rBP1~$5$;$k$3$H$,$G$-$k$,!$6K8B(B $q
\to \infty$ $B$G$N(B $\{X_q\}_q$ $B$N?6$kIq$$$K4X$9$kMM!9$J>pJs$,(B $T$ $B$+$i0z$-=P$;$k$3$H$,CN$i$l$F$$$k!%(B<br>
$BK\9V1i$G$O!$(B$\{X_q\}_q$ $B$N(B $q=\infty$ $B<~$j$G$N%b%N%I%m%_!<$r%H%m%T%+%kB?MMBN(B $T$
$B$rMQ$$$F6qBNE*$K5-=R$9$kJ}K!$r>R2p$9$k!%(B<br>
</div>
<br>
<br>
-------------------------------------<br>
Date: 22 Jan 2016, 16:30-18:00<br>
Title: Geometric monodromy around the tropical limit<br>
Speaker: Yuto Yamamoto (Graduate School of Mathematical Sciences,
University of Tokyo)<br>
Room: A-427, Faculty of Science, Shinshu University<br>
Abstract:<br>
The main subjects of study in tropical geometry are tropical
varieties which are defined as polyhedral complexes which have
certain kinds of affine structures.<br>
One can associate a tropical variety $T$ to a one-parameter family
of complex varieties $\{X_q\}_q$ by tropicalization.<br>
It is known that the tropical variety $T$ encodes the information of
the behavior of $\{X_q\}_q$ in the limit $q \to \infty$.<br>
In this talk, we give a concrete description of the monodromy
transformation of $\{X_q\}_q$ around $q=\infty$ in terms of the
tropical variety $T$.<br>
<br>
================================<br>
<br>
$BJ3$C$F$4;22C2<$5$$!#(B<br>
$B>pJs$N99?7$O%a!<%k$^$?$O2<5-(B web $B%Z!<%8$K$F$*CN$i$;$$$?$7$^$9!#(B<br>
<br>
<a moz-do-not-send="true"
href="http://math.shinshu-u.ac.jp/%7Etopology/seminar/"
target="_blank" rel="noreferrer">http://math.shinshu-u.ac.jp/~topology/seminar/</a><br>
<br>
$B?.=#%H%]%m%8!<%;%_%J!<$G$O!"9V1i<T$r?o;~Jg=8$7$F$*$j$^$9!#(B<br>
$B<+A&!&B>A&$"$j$^$7$?$i!"$<$R$*CN$i$;$/$@$5$$!#(B<br>
$B$h$m$7$/$*4j$$$$$?$7$^$9!#(B<br>
<br>
--<br>
$B6-(B $B7=0l(B<br>
<a class="moz-txt-link-abbreviated" href="mailto:ksakai@math.shinshu-u.ac.jp">ksakai@math.shinshu-u.ac.jp</a><br>
</body>
</html>