<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content="text/html; charset=iso-2022-jp" http-equiv=Content-Type>
<META name=GENERATOR content="MSHTML 11.00.9600.18098"></HEAD>
<BODY id=MailContainerBody
style="PADDING-TOP: 15px; PADDING-LEFT: 10px; PADDING-RIGHT: 10px" leftMargin=0
topMargin=0 CanvasTabStop="true" name="Compose message area">
<DIV><FONT face=Calibri>$B3'$5$^(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>$B!VB,CO@~5Z$S4XO"$9$k=tLdBj!W$N%W%m%0%i%`$,7h$^$j$^$7$?$N$G!$(B</FONT></DIV>
<DIV><FONT face=Calibri>$B$4O"Mm$7$^$9!%(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>$B0KF#?N0l(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri><FONT face=Calibri></FONT></FONT><FONT
face=Calibri><FONT
face=Calibri>========================================================</FONT></FONT></DIV>
<DIV>
<DIV><FONT face=Calibri>$B!VB,CO@~5Z$S4XO"$9$k=tLdBj(B2016$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV>
<DIV><FONT face=Calibri>$BF|;~!'#2#0#1#6G/#17n#1#0F|!JF|!K#9!'#3#0$+$i!!#17n#1#1F|!J7n!&=K!K#1#6!'#0#0$^$G(B</FONT></DIV>
<DIV><FONT face=Calibri>$B>l=j!'7'K\Bg3X650i3XIt#3!]#C9V5A<<(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>$B#17n#1#0F|(B($BEZ!K(B</FONT></DIV>
<DIV><FONT face=Calibri> 9:30--10:20 $BK\B?@5J?!JElKLBg3X!K!!!V(BSpectral
convergence under bounded Ricci curvature$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri>10:30--11:20 $B2#ED9*!J5~ETBg3X!K!!!V#T#A#B!W(B</FONT></DIV>
<DIV><FONT face=Calibri>11:30--12:20
$B;0@P!JElKLBg3X!K!!!V%"%l%/%5%s%I%m%U6u4V$NE=$j9g$o$;!W(B<BR></FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>14:00--14:50 $BB@ED?50l!J5~ETBg3X!K!!!V(BGradient flows in
CAT(1)-spaces$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri>15:00--15:50$B!!6aF#7D!J;38}Bg3X!K(B $B!!!VHyJ,0[<o5eLLDjM}!W(B</FONT></DIV>
<DIV><FONT face=Calibri>16:10--17:00 $B0uFn?.9(!J?73cBg3X!K!!!!!V(BGeodesics in a
Finsler torus of revolution$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>$B#17n#1#2F|(B($BF|!K(B</FONT></DIV>
<DIV><FONT face=Calibri> 9:30--10:20
$B>>1:K>!JJ!2,Bg3X!K!!!V12;eJ}Dx<0$NN%;62=!W(B</FONT></DIV>
<DIV><FONT face=Calibri>10:30--11:20 $B0BF#D>Li!J7'K\Bg3X!K!!!V(B</FONT><FONT><FONT
size=3><SPAN style='FONT-SIZE: 10pt; FONT-FAMILY: "$B#M#S(B $B%4%7%C%/(B"'><FONT
size=3>$B#4<!856u4V7?Fb$NJ?6Q6JN(%Y%/%H%k$,Nm$G$"$k6JLL!W(B</FONT></SPAN></FONT></FONT></DIV>
<DIV><FONT><FONT size=3><SPAN
style='FONT-SIZE: 10pt; FONT-FAMILY: "$B#M#S(B $B%4%7%C%/(B"'></SPAN></FONT></FONT><FONT
face=Calibri>11:30--12:20 $B9bDEHtD;!J<sETBg3X(B)$B!!!V(BRiemannian Wasserstein geometry on
the space of </FONT></DIV>
<DIV><FONT
face=Calibri>
Gaussian measures over the Wiener space$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>14:00--14:50 Jo"el Rouyer$B!J5~ETBg3X!K!!!V(BSimple closed
geodesics on most Alexandrov surfaces$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri>15:00--15:50 $B7,9>0lMN!JJ!2,Bg3X!K!!!V(BLiouville property for
harmonic maps between metric spaces$B!W(B</FONT></DIV>
<DIV><FONT face=Calibri></FONT> </DIV>
<DIV><FONT face=Calibri>$BO"Mm@h(B<BR>$B!!0KF#?N0l(B<BR>$B!!7'K\Bg3X650i3XIt(B<BR>$B!!(BTel:
096-342-2593<BR> E-mail: </FONT><A
title="mailto:j-itoh@kumamoto-u.ac.jp
C$B#t#r#l(B $B%-!<$r2!$7$J$,$i%/%j%C%/$9$k$H!"%j%s%/@h$K%"%/%;%9$G$-$^$9!#(B"
href="mailto:j-itoh@kumamoto-u.ac.jp"><FONT
title="mailto:j-itoh@kumamoto-u.ac.jp
C$B#t#r#l(B $B%-!<$r2!$7$J$,$i%/%j%C%/$9$k$H!"%j%s%/@h$K%"%/%;%9$G$-$^$9!#(B"
face=Calibri>j-itoh@kumamoto-u.ac.jp</FONT></A><BR><BR><FONT
face=Calibri> </FONT></DIV></DIV></DIV></BODY></HTML>