<div dir="ltr">皆様、<br><br>以下のお知らせを送らせていただきます。よろしくお願い致します。<br><br>山田澄生<br><br>////////////////////////////////////////////////////////////////////////<br>メーリングリストの皆様、<br>
<br>
重複ご海容ください。<br>
日仏共同研究(タイヒミュラー空間と写像類群)による小研究集会を<br>
11月16日(月)から20日(金)まで<br>
東京大学大学院数理科学研究科 002 号室で<br>
以下の要領で行います。使用言語は英語です。<br>
皆様奮ってご参加ください。<br>
<br>
とりいそぎ<br>
大鹿健一(阪大理)<br>
逆井卓也(東大数理)<br>
河澄響矢(東大数理)<br>
<br>
=========================<br>
Atelier de travail franco-japonais sur la géométrie<br>
des groupes modulaires et des espaces de Teichmüller<br>
<br>
Les 16-20 novembre 2015<br>
Salle 002, Faculté de sciences mathématiques, Université de Tokyo<br>
<br>
<br>
Le lundi 16 novembre<br>
<br>
(10:30-12:00  Salle 128<br>
(Séminaire sur l'analyse géométrique complexe:<br>
(Hideki Miyachi (Université d’Osaka)<br>
<br>
13:30-14:30<br>
Athanase Papadopoulos (Université de Strasbourg/CNRS)<br>
Timelike geometry<br>
<br>
<br>
Le mardi 17 novembre<br>
<br>
10:00-11:00<br>
Athanase Papadopoulos (Université de Strasbourg/CNRS)<br>
Spherical geometry I<br>
<br>
11:30-12:30<br>
Takahito Naito (Université de Tokyo)<br>
Sullivan's coproduct on the relative loop homology<br>
<br>
14:00-15:00 + 15:30-16:30<br>
Gwénaël Massuyeau (Université de Strasbourg/CNRS)<br>
Fox pairings in Hopf algebras and Poisson structures<br>
<br>
(16:30-17:00 Salle commune <premier étage><br>
(pause café pour Séminaire du mardi sur la topologie<br>
<br>
(17:00-18:30 Salle 056<br>
(Séminaire du mardi sur la topologie<br>
(Atsuko Katanaga (Université de Shinshu)<br>
<br>
<br>
Le mercredi 18 novembre<br>
<br>
10:00-11:00<br>
Athanase Papadopoulos (Université de Strasbourg/CNRS)<br>
Spherical geometry II<br>
<br>
11:30-12:30<br>
Yasuo Wakabayashi (Université de Tokyo)<br>
A theory of dormant opers<br>
<br>
Le jeudi 19 novembre<br>
<br>
10:00-11:00<br>
Masatoshi Sato (Tokyo Denki University)<br>
On the cohomology ring of the handlebody mapping class group of genus two<br>
<br>
11:30-12:30<br>
Elena Frenkel (Université de Strasbourg)<br>
Area formula for Hyperbolic Triangles and Lexell problem<br>
<br>
14:00-15:00<br>
Yuanyuan Bao (Université de Tokyo)<br>
Heegaard Floer homology for transverse graphs with sinks and sources<br>
<br>
15:30-16:30<br>
Tadayuki Watanabe (Université de Shimane)<br>
An invariant of fiberwise Morse functions on surface bundle over S^1 by counting graphs<br>
<br>
Le vendredi 20 novembre<br>
<br>
09:30-10:30 + 11:00-12:00<br>
Olivier Guichard (Université de Strasbourg)<br>
Compactifications of certain locally symmetric spaces<br>
<br>
(Les 20 à 22 novembre Salle 123<br>
(Rigidity School, Tokyo 2015<br>
<br>
<br>
=======<br>
Résumés des exposés<br>
<br>
<br>
Papadopoulos: Timelike geometry<br>
Papadopoulos: Spherical geometry I<br>
<br>
<br>
Naito: Sullivan's coproduct on the relative loop homology<br>
<br>
Sullivan's coproduct is the coproduct on the relative homology of the<br>
free loop space of a closed oriented manifold (called the relative loop<br>
homology). It is known that the relative loop homology is an<br>
infinitesimal bialgebra with respect to this coproduct and the loop<br>
product. In this talk, we will give a homotopical description of<br>
Sullivan's coproduct and introduce its properties. Moreover, we will<br>
compute the coalgebra structure of spheres over the rational number<br>
field by using the description.<br>
<br>
<br>
Massuyeau: Fox pairings in Hopf algebras and Poisson structures<br>
<br>
We will present the general theory of Fox pairings in Hopf algebras, 
which will be illustrated through several algebraic examples. Next, we 
will recall how such operations naturally appear in  topology by 
considering intersections of curves in surfaces, and sketch how this 
generalizes to higher-dimensional manifolds. Finally, we will use Fox 
pairings to construct some natural Poisson structures on the affine 
scheme of representations of a cocommutative Hopf algebra in an 
arbitrary group scheme.  (Based on joint works with Vladimir Turaev.)<br>
<br>
<br>
Wakabayashi: A theory of dormant opers<br>
<br>
A(n) (dormant) oper, being our central object of this talk, is a certain<br>
principal homogeneous space on an algebraic curve (in positive<br>
characteristic) equipped with an integrable connection. The study of<br>
dormant opers and their moduli may be linked to various fields of<br>
mathematics, e.g., the p-adic Teichmuller theory developed by Shinichi<br>
Mochizuki, Gromov-Witten theory, combinatorics of rational polytopes (<br>
and spin networks), etc. In this talk, we would like to introduce the<br>
definition of a dormant oper and to present some related results,<br>
including an explicit formula for the generic number of dormant opers,<br>
which was conjectured by Kirti Joshi.<br>
<br>
<br>
Papadopoulos: Spherical geometry II<br>
<br>
<br>
Sato: On the cohomology ring of the handlebody mapping class group of genus two<br>
<br>
The genus two handlebody mapping class group acts on a tree constructed by Kramer from the disk complex,<br>
and decomposes into an amalgamated product of two subgroups.<br>
We determine the integral cohomology ring of the genus two handlebody mapping class group<br>
by examining these subgroups and the Mayer-Vietoris exact sequence.<br>
Using this result, we estimate the orders of low dimensional homology groups<br>
of the genus three handlebody mapping class group.<br>
<br>
<br>
Frenkel: Area formula for Hyperbolic Triangles and Lexell problem<br>
<br>
My talk will be about an area formula in terms of side lengths for 
triangles in plane hyperbolic geometry and its geometrical 
interpretation . The proof of this formula is analogous to a proof given
 by Leonhard Euler in the spherical case. I will speak in particular 
about the Lexell problem, that is, the problem of finding the locus of 
vertices of triangle of fixed area and fixed base.<br>
<br>
<br>
Bao: Heegaard Floer homology for transverse graphs with sinks and sources<br>
<br>
We defined the Heegaard Floer homology (HF) for balanced bipartite 
graphs. Around the same time, Harvey and O’Donnol defined the 
combinatorial HF for transverse graphs without sink and source (see the 
definition in [arXiv:1506.04785v1]). In this talk, we compare these two 
methods and consider the HF for transverse graphs with the same number 
of sinks and sources in both analytic and combinatorial ways.<br>
<br>
<br>
Watanabe: An invariant of fiberwise Morse functions on surface bundle over S^1 by counting graphs<br>
<br>
We apply Lescop’s construction of Z-equivariant perturbative invariant<br>
of knots and 3-manifolds to the explicit equivariant propagator of “Z-paths”.<br>
We obtain an invariant of certain equivalence classes of fiberwise Morse<br>
functions on a 3-manifold fibered over S^1, which can be<br>
considered as a higher loop analogue of the Lefschetz zeta function and whose<br>
construction will be applied to that of finite type invariants of knots in such<br>
a 3-manifold.<br>
<br>
<br>
Guichard: Compactifications of certain locally symmetric spaces</div>