<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=ISO-2022-JP">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    $B3'MM(B<br>
    <br>
    $BElKLBg3X$G$N9q:]>.8&5f=82q!VFC<l4v2?$H6K>.ItJ,B?MMBN!W(B<br>
    <div><span class=""
style="border-collapse:collapse;font-family:arial,sans-serif;font-size:14px"><a
          href="http://www.math.tohoku.ac.jp/meetings/sgms/"
          target="_blank" style="color:rgb(17,85,204)">http://www.math.tohoku.ac.jp/meetings/sgms/</a></span><font
        class="" face="arial, sans-serif"><span class=""
          style="border-collapse:collapse;font-size:14px"></span></font><br>
      $B$KB3$-$^$7$F!"(B<br>
      $BBg:e;TN)Bg3X?t3X8&5f=j(B $BHyJ,4v2?3X%;%_%J!<(B<br>
<a class="moz-txt-link-freetext" href="http://www.sci.osaka-cu.ac.jp/math/OCAMI/DG_Seminar/DG_index.html#Differential_Geometry_Seminar">http://www.sci.osaka-cu.ac.jp/math/OCAMI/DG_Seminar/DG_index.html#Differential_Geometry_Seminar</a><br>
      $B$K$*$$$F!"2<5-$N$h$&$J!"(BJason Lotay $B;a$K$h$kFCJL9V5A$r4k2h$7$^$9!#(B<br>
      $B$44X?4$N$"$kJ}$O!"J3$C$F$4;22C$/$@$5$$!#(B<br>
      $B>0!"K\4k2h$O!":eBgM}!&8eF#N5;J65<x$H$N6(NO$N$b$H<B;\$7$^$9!#(B</div>
    <br>
    $BBg?NED5AM5(B
    <br>
    $B")(B558-8585$B!!Bg:e;T=;5H6h?yK\(B3-3-138
    <br>
    $BBg:e;TN)Bg3XM}3X8&5f2J?t3X65<<(B<br>
    &$BBg:e;TN)Bg3X?t3X8&5f=j(B<br>
    TEL 06-6605-2617$B!J8&5f<<!K(B<br>
    e-mail: <a class="moz-txt-link-abbreviated" href="mailto:ohnita@sci.osaka-cu.ac.jp">ohnita@sci.osaka-cu.ac.jp</a><br>
    <br>
    $B!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s(B<br>
    <br>
    <b>$B9V1i<T!'!!(BJason Lotay $B;a!!(B (Univ. College London)</b><br>
    <b><br>
    </b><b>$BF|;~!'(B 2013$BG/(B8$B7n(B12$BF|!J7n!K!!(B(1) 1:30-2:30$B!!(B(2) 4:00-5:00</b><br>
    <br>
    <b>$B>l=j!'(B $BBg:e;TN)Bg3XM}3X8&5f2J(B $B?t3X65<<!!6&DL8&5fEo(B3$B3,!!?t3X9V5f<<!!(B(301$B<<(B)</b><br>
    <br>
    <b>$B!T%W%m%0%i%`!U(B</b><br>
    <br>
    1:30-2:30$B!!(BCoassociative conifolds 1: smoothings of cones<br>
    <br>
    4:00-5:00$B!!(BCoassociative conifolds 2: singularities and stability<br>
    <br>
    <b>$B!T35MW!U(B</b><br>
    Coassociative conifolds 1: smoothings of cones<br>
    <br>
    Coassociative 4-folds are important examples of calibrated, hence
    volume-minimizing, submanifolds and are inherently related to
    Riemannian manifolds with exceptional holonomy group G_2.  In this
    first talk, I will discuss the theory of asymptotically conical
    coassociative 4-folds, which are smoothings of coassociative cones,
    including describing their moduli space of deformations.   These
    submanifolds are particularly important for providing local models
    for resolving singular coassociative 4-folds.<br>
    <br>
    <br>
    Coassociative conifolds 2: singularities and stability<br>
    <br>
    Singular coassociative 4-folds help us to understand the boundary of
    the moduli space of smooth coassociative 4-folds and are important
    from the point of view coassociative fibrations of compact G_2
    manifolds.  One of the simplest models of a singularity is given by
    a cone.  In this second talk, I will discuss the theory of
    coassociative conical singularities, with a particular focus on the
    role of a numerical invariant associated to coassociative cones
    called the stability index.<br>
    <br>
  </body>
</html>