<div dir="ltr"><div><div style="font-family:arial,sans-serif;font-size:14px">$B3'MM(B</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px"><div><div>$B$3$N%a!<%k$r=EJ#$7$F<u$1<h$i$l$?J}$O$4MF<O$/$@$5$$!%(B</div>
<div>$B:#G/EYBhFs2sL\$NL@<#Bg3X4v2?3X%;%_%J!<$r0J2<$NMWNN$G3+:ECW$7$^$9$N$G$*CN$i$;CW$7$^$9!%(B</div></div></div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">$BF|Dx!'(B6$B7n(B6$BF|!JLZ!K(B16:30 - 18:00</div><div style="font-family:arial,sans-serif;font-size:14px">
$B>l=j!'L@<#Bg3X@8ED%-%c%s%Q%9BhFs9;<K(BA$B4[(BA205</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">$B9V1i<T!':{J?(B $BM5;K(B $B;a!JL>8E20Bg3X!K(B</div><div style="font-family:arial,sans-serif;font-size:14px">
<br></div><div style="font-family:arial,sans-serif;font-size:14px">$B9V1iBjL\!'Bh0l(BBetti$B?t$,(B1$B$N(B3$B<!85B?MMBN$K1h$C$?(BBauer-Furuta$BITJQNL$NE=$j9g$o$;8x<0(B</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">
$B35MW!'Bh0l(BBetti$B?t$,(B1$B$N(B3$B<!85B?MMBN$KBP$7$F!$(BSeiberg-Witten-Floer$B0BDj%[%b%H%T!<7?$rDj5A$9$k!%$5$i$K$=$l$rMQ$$$F(BBauer-Furuta$BITJQNL$NE=$j9g$o$;8x<0$r9=@.$9$k!%(B</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">
$B;29MJ88%!'(B</div><div style="font-family:arial,sans-serif;font-size:14px"><ol><li style="margin-left:15px">P. B. Kronheimer, C. Manolescu, Periodic Floer pro-spectra from the Seiberg-Witten equations, arXiv:math/0203243v1.</li>
<li style="margin-left:15px">C. Manolescu, Seiberg-Witten-Floer stable homotopy type of three-manifolds with b_1=0, Geom. Topol. 7 (2003), 889-932. </li><li style="margin-left:15px">C. Manolescu, A gluing theorem for the relative Bauer-Furuta invariants, J. Differential Geom. 76(2007), no.1, 117-153.</li>
</ol></div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px"><div><font face="arial, helvetica, sans-serif">$B6=L#$r;}$?$l$=$&$JJ}$,$*$i$l$^$7$?$i<~CN$7$F$$$?$@$1$^$9$H9,$$$G$9!%3'MM$N$4;22C$r$*BT$A$7$F$*$j$^$9!%(B</font></div>
<div><font face="arial, helvetica, sans-serif"><br></font></div><div><font face="arial, helvetica, sans-serif">$B4v2?%;%_%J!<$N%[!<%`%Z!<%8!'(B</font></div><div><a href="http://www.isc.meiji.ac.jp/~takahiko/GeometrySeminar/index.html" target="_blank">http://www.isc.meiji.ac.jp/~takahiko/GeometrySeminar/index.html</a></div>
</div></div><div><br></div><div><br></div><br clear="all"><div>$B5HED>0I'(B<div>$BL@<#Bg3XM}9)3XIt?t3X2J(B</div></div>
</div>