<div style="font-family:arial,sans-serif;font-size:14px">$B3'MM(B</div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px"><font face="arial, helvetica, sans-serif">$B$3$N%a!<%k$r=EJ#$7$F<u$1<h$i$l$?J}$O$4MF<O$/$@$5$$!%(B</font></div>
<div style="font-family:arial,sans-serif;font-size:14px"><font face="arial, helvetica, sans-serif">$BBh#62sL@<#Bg3X4v2?3X%;%_%J!<$r0J2<$NMWNN$G3+:ECW$7$^$9$N$G$*CN$i$;CW$7$^$9!%(B</font></div><div style="font-family:arial,sans-serif;font-size:14px"><span style="font-family:arial,helvetica,sans-serif"><br>
$BF|Dx!'(B12$B7n(B5$BF|(B($B?e(B) 16:30-18:00$B!J$$$D$b$HMKF|$,0[$J$j$^$9!%(B</span><span style="font-family:arial,helvetica,sans-serif">$B$4Cm0U$/$@$5$$!%!K(B</span></div><div style="font-family:arial,sans-serif;font-size:14px"><br></div><div style="font-family:arial,helvetica,sans-serif;font-size:14px">
$B>l=j!'BhFs9;<K(BA$B4[(B A309</div><div style="font-family:arial,helvetica,sans-serif;font-size:14px"><br></div><div style="font-family:arial,helvetica,sans-serif;font-size:14px">$B9V1i<T!'LnBt(B $B7<(B $B;a!J(BIHES$B!K(B</div><div style="font-family:arial,helvetica,sans-serif;font-size:14px">
<br></div><div style="font-family:arial,helvetica,sans-serif;font-size:14px">$B9V1iBjL\!':4!9LZB?MMBN$N%3%[%b%m%8!<>CLGDjM}$K$D$$$F(B</div><div style="font-family:arial,helvetica,sans-serif;font-size:14px"><br></div><div style="font-family:arial,sans-serif;font-size:14px">
<span style="font-family:arial,helvetica,sans-serif">$B35MW!'(B</span>$B:4!9LZB?MMBN(B M $B$H$O$=$N?m(B M x R_+ $B$,<+A3$K%1!<%i!<B?MMBN$H$J$k$h$&$J@\?(%j!<%^%sB?MMBN$G$"$j!$6aG/$O(BEinstein$B4v2?5Z$S?tM}J*M}$H$N4X78$K$*$$$F<g$K8&5f$5$l$F$$$k!%K\9V1i$G$O!$:4!9LZB?MMBN$,;}$D<+A3$J%H!<%i%9:nMQ$NF1JQ%3%[%b%m%8!<$rMQ$$$FF@$i$l$k0J2<$N$h$&$J7k2L$K$D$$$F=R$Y$k!%!J(BOliver Goertsches$B!J%O%s%V%k%/Bg3X!K$H(BDirk Toeben$B!J%5%s%Q%&%mBg3X!K$H$N6&F18&5f!K(B</div>
<div style="font-family:arial,sans-serif;font-size:14px"><div><span style="border-collapse:collapse"><div>A) $BJD:4!9LZB?MMBN$N(BReeb$BN.$NJD50F;$,M-8B8D$J$i$P!$$=$N8D?t$O(BReeb$BN.$N(Bbasic$B%3%[%b%m%8!<$N<!85$HEy$7$$!%(B</div><div>B) 2n+1$B<!85JD:4!9LZB?MMBN(BM$B$N(BReeb$BN.$O>o$K(Bn+1$B8D0J>e$NJD50F;$r;}$A!$(Bn+1$B8D$NJD50F;$r;}$D$3$H$H(BM$B$,<B%3%[%b%m%8!<5eLL$G$"$k$3$H$OF1CM$G$"$k!%(B</div>
<div>C) $B:4!9LZB?MMBN$N(BReeb$BN.$N(Bbasic Dolbeault$B%3%[%b%m%8!<$KBP$9$k(BCarrell-Liebermann$B7?>CLGDjM}!%(B</div><font face="arial, helvetica, sans-serif"><div><br></div><div>$B;29MJ88%!'(B</div><div><ol><li style="margin-left:15px">O. Goertsches, H. Nozawa, D. Toeben, Equivariant cohomology of K-contact manifolds, to appear in Math. Ann.</li>
<li style="margin-left:15px">O. Goertsches, H. Nozawa, D. Toeben, Rigidity and vanishing of basic Dolbeault cohomology of Sasakian manifolds, Preprint.<br></li><li style="margin-left:15px">D. Martelli, J. Sparks, S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008) 611-673.<br>
</li></ol></div><div><br></div><div><br></div><div>$B6=L#$r;}$?$l$=$&$JJ}$K<~CN$7$F$/$@$5$$$^$9$H9,$$$G$9!%3'MM$N$4;22C$r$*BT$A$7$F$*$j$^$9!%(B</div><div><br></div></font></span></div><div><font face="arial, helvetica, sans-serif">$B4v2?%;%_%J!<$N%[!<%`%Z!<%8!'(B<a href="http://www.isc.meiji.ac.jp/~takahiko/GeometrySeminar/index.html" target="_blank">http://www.isc.meiji.ac.jp/~takahiko/GeometrySeminar/index.html</a></font></div>
</div><div><br></div>$B5HED>0I'(B<div>$BL@<#Bg3XM}9)3XIt?t3X2J(B</div><br>