<span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><div>
$B3'MM(B</div><div><br></div><div>$B$3$N%a!<%k$r=EJ#$7$F<u$1<h$i$l$?J}$O$4MF<O$/$@$5$$!%(B</div><div>$BBh;02sL@<#Bg3X4v2?3X%;%_%J!<$r0J2<$NMWNN$G3+:ECW$7$^$9$N$G$*CN$i$;CW$7$^$9!%(B</div><div><br></div><div>$BF|Dx!'(B7$B7n(B26$BF|!JLZ!K(B16:30-18:00</div><div>$B>l=j!'BhFs9;<K(BA$B4[(BA309</div><div><br></div><div>$B9V1i<T!'<r0f(B $B9b;J(B $B;a!J<sETBg3XEl5~!K(B</div>

</span></span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><div>
<br></div><div>$B9V1iBjL\!'(B<span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$BJ#AG4zB?MMBN$N<B7A$N8r:5$NBPm(@-(B</span></div><div><br></div></span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$BK\9V1i$OF~9>Gn;a!JEl5~EE5!Bg3X!K!"ED:jGnG7;a!JC^GHBg3X!K$H$N6&F18&5f$K$h$k!%(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><div>


$B35MW!'(B<span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">K\"ahler$BB?MMBN$K$*$$$FBP9gE*H?@5B'EyD9JQ49$NITF0E@=89g$H$7$FM?$($i$l$kItJ,B?MMBN(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$B$r<B7A$H8F$V!%Dj5A$+$i<B7A$OA4B,COE*(BLagrange$BItJ,B?MMBN$K$J$k!%%3%s%Q%/%H7?(BHermite</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$BBP>N6u4V$NFs$D$N<B7A$N8r:5$OBPm(=89g$K$J$k$3$H$,ED:j(B[4]$B!$EDCf(B-$BED:j(B[3]$B$K$h$j<($5$l$F$$$k!%(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$BJ#AG4zB?MMBN$K$O(B$k$$BBP>N6u4V$N9=B$$,F~$j!$$3$l$rMQ$$$FBPm(=89g$rDj5A$9$k$3$H$,$G$-$k(B([1], [2])$B!%(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$BK\9V1i$G$O$^$:J#AG4zB?MMBN$NBPm(=89g$N9=B$$K$D$$$F=R$Y$k!%$5$i$K!$J#AG%Y%/%H%k6u4V(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$BFb$NJ#AGItJ,6u4V$NNs$N$J$9J#AG4zB?MMBN$K$*$$$F!$Fs$D$N<B4zB?MMBN$N8r:5$r7hDj$7!$(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$B2#CGE*$K8r$o$k$J$i$P8r:5$O6KBgBPm(=89g$K$J$k$3$H$r<($9!%(B</span></div>


<div><br></div><div>$B;29MJ88%!'(B</div><div><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">[1] J. Berndt, S. Console and A. Fino,<br>On index number and topology of flag manifolds,<br>


Differential Geom. Appl., 15 (2001), 81--90.<br><br>[2] C. S\'anchez,<br>The invariant of Chen-Nagano on flag manifolds,<br>Proc. Amer. Math. Soc., 118 (1993), No. 4, 1237--1242.<br><br>[3] M. S. Tanaka and H. Tasaki,<br>


The intersection of two real forms in Hermitian symmetric spaces of compact type,<br>to appear in J. Math. Soc. of Japan.<br><br>[4] H. Tasaki,<br>The intersection of two real forms in the complex hyperquadric,<br>Tohoku Math. J. 62 (2010), 375--382.</span></div>


</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><div>
<br></div></span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px">$B6=L#$r;}$?$l$=$&$JJ}$K<~CN$7$F$$$?$@$1$^$9$H9,$$$G$9!%3'MM$N$4;22C$r$*BT$A$7$F$*$j$^$9!%(B</span><span style="border-collapse:collapse;color:rgb(34,34,34);font-family:arial,sans-serif;font-size:14px"><div>


<br></div><div><br></div></span></span>$B5HED>0I'(B<div>$BL@<#Bg3XM}9)3XIt?t3X2J(B</div><br>