<div style="TEXT-ALIGN: left">$B4v2?3X(BML$B$N3'MM!$(B</div>
<div style="TEXT-ALIGN: center" align="left"><font size="4"></font> </div>
<div>2010$BG/(B12$B7n$NCLOC2q$r2<5-$NMWNN$K$F9T$$$^$9!%B??t$N$4;22C$r$*BT$A$7$F$$$^$9!%(B</div>
<div style="TEXT-INDENT: 0px; MARGIN: 0px"> </div>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">$BF|!!!!;~(B $B!'(B 12$B7n(B1$BF|!J?e!K(B17$B;~$+$i(B18$B;~(B </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">$B>l!!!!=j(B $B!'(B $BN)65Bg3XCSB^%-%c%s%Q%9(B4$B9f4[(B4$B3,(B4412$B65<<(B \\</p>
<div style="TEXT-INDENT: 0px; MARGIN: 0px">$B9V(B $B1i(B $B<T(B $B!'(B Daniel Sternheimer $B!JN)65Bg3XM}3XIt?t3X2J(B & Institut de Math\'ematiques de Bourgogne, Dijon, France $B!K(B </div>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">$B9V1iBjL\!'(BDeformations, Quantizations, and the Geometry of Space-Time: An Introductory Overview</p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px"> </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">Abstract: We present, from an epistemological point of view, </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">the evolution of physical concepts in the context of the relation </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">between mathematics and physics. We stress the importance of </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">symmetries and of space-time in fundamental physical theories and </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">show that the above evolution is best understood in the framework of </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">the mathematical notion of deformation. The concepts of relativity and </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">of quantization are important paradigms. We then briefly overview </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">deformation quantization and its many avatars, including quantum </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">groups and non commutative geometries.</p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">In the last part we explain how deforming the space-time of Einstein, </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">Lorentz and Minkowski and its Lie group of symmetries leads to </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">a fruitful object which together with its group of symmetries is </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">referred as AdS or \lq\lq anti de Sitter space". The study of AdS has </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">significant physical consequences. One example is that massless </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">particles in four dimensional space-time like photons become, in a way </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">compatible with quantum electrodynamics, composites of massless particles </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">in three dimensional space-time called singletons. We end by describing </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">an ongoing program in which anti de Sitter would be quantized in </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">some regions related to black holes, speculating that this might </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">explain the creation of matter in a universe in accelerated expansion.</p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px"></p>
<div style="TEXT-INDENT: 0px; MARGIN: 0px"> </div>
<div style="TEXT-INDENT: 0px; MARGIN: 0px">$BLd$$9g$o$;@h(B </div>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">$BN)65Bg3XM}3XIt(B </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">$B?t3X65<<CLOC2q78(B </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px">$B:4F#(B $B?.:H(B </p>
<p style="TEXT-INDENT: 0px; MARGIN: 0px"><a href="mailto:nobuya@rikkyo.ac.jp" target="_blank">nobuya@rikkyo.ac.jp</a></p>