<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=Content-Type content="text/html; charset=iso-2022-jp">
<meta name=Generator content="Microsoft Word 12 (filtered medium)">
<style>
<!--
 /* Font Definitions */
 @font-face
        {font-family:"$B#M#S(B $B%4%7%C%/(B";
        panose-1:2 11 6 9 7 2 5 8 2 4;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:"$B#M#S(B $B#P%4%7%C%/(B";
        panose-1:2 11 6 0 7 2 5 8 2 4;}
@font-face
        {font-family:"\@$B#M#S(B $B%4%7%C%/(B";
        panose-1:2 11 6 9 7 2 5 8 2 4;}
@font-face
        {font-family:"\@$B#M#S(B $B#P%4%7%C%/(B";
        panose-1:2 11 6 0 7 2 5 8 2 4;}
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0mm;
        margin-bottom:.0001pt;
        text-align:justify;
        text-justify:inter-ideograph;
        font-size:10.0pt;
        font-family:"Arial","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
        {mso-style-priority:99;
        mso-style-link:"$B=q<0$J$7(B \($BJ8;z(B\)";
        margin:0mm;
        margin-bottom:.0001pt;
        font-size:10.0pt;
        font-family:"$B#M#S(B $B%4%7%C%/(B";}
span.a
        {mso-style-name:"$B=q<0$J$7(B \($BJ8;z(B\)";
        mso-style-priority:99;
        mso-style-link:$B=q<0$J$7(B;
        font-family:"$B#M#S(B $B%4%7%C%/(B";}
span.19
        {mso-style-type:personal;
        font-family:"Arial","sans-serif";
        color:windowtext;}
span.20
        {mso-style-type:personal-reply;
        font-family:"Arial","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page Section1
        {size:612.0pt 792.0pt;
        margin:99.25pt 30.0mm 30.0mm 30.0mm;}
div.Section1
        {page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
 <o:shapedefaults v:ext="edit" spidmax="1026">
  <v:textbox inset="5.85pt,.7pt,5.85pt,.7pt" />
 </o:shapedefaults></xml><![endif]--><!--[if gte mso 9]><xml>
 <o:shapelayout v:ext="edit">
  <o:idmap v:ext="edit" data="1" />
 </o:shapelayout></xml><![endif]-->
</head>

<body lang=JA link=blue vlink=purple style='text-justify-trim:punctuation'>

<div class=Section1>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B3'MM!$(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BD>A0$N$4O"Mm$H$J$j!$@?$K?=$7Lu$4$6$$$^$;$s$,!$(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B0JA0$*CN$i$;$7$^$7$?(B</span><span
lang=EN-US>Mark Behrens</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$5$sO"B39V1i$N(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%W%m%0%i%`$,$G$-$^$7$?$N$G!$(B</span><span
lang=EN-US>.pdf</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%U%!%$%k$NE:IU(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%U%!%$%k$H$7$F$*Aw$j$$$?$7$^$9!%$^$?(B</span><span
lang=EN-US>.tex</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%U%!%$%k(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$b$3$N%a!<%k$N2<$K$D$1$F$*$-$^$7$?$N$G!$$4;29M$K(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$5$l$F2<$5$$!%(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$5$F!$%W%m%0%i%`$K$b=q$-$^$7$?$,!$:#2s$N$9$Y$F$N(B<span
lang=EN-US style='color:#1F497D'><o:p></o:p></span></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i$O!$(B</span><span
lang=EN-US>Behrens</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$5$s$N$42wBz$rF@$F!$(B</span><span
lang=EN-US>Hard Disk</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BIU$-(B<span
lang=EN-US style='color:#1F497D'><o:p></o:p></span></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%S%G%*%+%a%i$K$F<}O?$5$l$^$9!%$3$l$i$N%S%G%*%U%!%$%k(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$r$44uK>$NJ}$O!$==FsJ,$JMFNL$r;}$C$?(B</span><span
lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0#G(B</span><span
lang=EN-US>B</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$"$k$3$H$,(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BK>$^$7$$(B</span><span
lang=EN-US>)</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#P#C$b$7$/$O%]!<%?%V%k$N(B</span><span
lang=EN-US>Hard Disk</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$r$4;};22<$5$$!%(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B6bMKM<J}$N:G=*9V1i$,=*$o$C$?8e$KBG$A>e$22q$G$b3+$-!$(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$=$N4V$K%U%!%$%k$N%3%T!<$r9T$$$?$$$H;W$$$^$9!%(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B:G8e$K!$(B</span><span
lang=EN-US>Behrens</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B=`Hw%;%_%J!<$G$N9V5AO?$,CY$l$F$$$k(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$3$H$r!$?<$/$*OM$S?=$7>e$2$^$9!%!!=`Hw%;%_%J!<$N(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V5AO?$H:#2s$NO"B39V1i$N9V5AO?$O!$40@.(B</span><span
lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$7$FFn$,%[!<%`(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%Z!<%8$N;H$$J}$r3P$((B</span><span
lang=EN-US>)</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B<!Bh!$(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><a
href="http://venus.kyy.nitech.ac.jp/~norihiko/">http://venus.kyy.nitech.ac.jp/~norihiko/</a><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$K%"%C%W$9$kM=Dj$G$9$N$G!$$I$&$+$4M}2r2<$5$k$h$&!$(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$*4j$$?=$7$"$2$^$9!%(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B<h$j5^$.!$(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BFnHOI'(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%%%% </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$3$3$+$i2<(B</span><span
lang=EN-US> %%%%%%%%%%%%%%%%<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\documentstyle[11pt,a4j]{jarticle}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\pagestyle{empty}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%%%%%%%%%%%%%<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\newcommand{\kouen}[2]{\noindent\makebox[3cm][r]{#1}\hspace{0.5cm}%<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>  \parbox[t]{12.2cm}{#2}}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%%%%%%%%%<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{document}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{center}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>  {\LARGE<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>  \bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$BL>9)Bg%[%b%H%T!<O@=82q#0#8!]#1(B</span><span lang=EN-US>\\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>Mark Behrens </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B$5$sO"B39V1i(B</span><span lang=EN-US>}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{center}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{10mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\small<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\noindent<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BJ8It2J3X>J2J3X8&5fHq4pHW8&5f(B</span><span
lang=EN-US>(B)(1)</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B2]BjHV9f(B</span><span
lang=EN-US>16340015 (</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BBeI=(B</span> <span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BFn(B</span> <span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BHOI'(B</span><span
lang=EN-US>)<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{3mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\newline\noindent<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$K$h$k8&5f=82q$r3+:ECW$7$^$9$N$G$40FFb?=$7>e$2$^$9(B</span><span
lang=EN-US>.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{3mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>{\bf<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{tabular}{ll}<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BF|;~(B</span><span
lang=EN-US>\quad: & </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#2#0#0#8G/#17n#2#1F|(B</span><span
lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B7n(B</span><span
lang=EN-US>) $\sim$ \ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#5F|(B</span><span
lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B6b(B</span><span
lang=EN-US>) \\<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B2q>l(B</span><span
lang=EN-US>\quad: & </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BL>8E20;T><OB6h8f4o=jD.L>8E209)6HBg3X(B</span><span
lang=EN-US>\\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\quad &  </span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo(B</span><span lang=EN-US>(</span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B65M\%-%c%s%Q%9(B</span><span lang=EN-US>)</span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<(B</span><span lang=EN-US>(</span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B7n!&?e!&LZ!&6b(B</span><span lang=EN-US>) \\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\quad & </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0#39V5A<<(B</span><span lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B2P!&?e(B</span><span
lang=EN-US>)</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B!$#1#0#79V5A<<(B</span><span
lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B?e(B</span><span
lang=EN-US>)<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{tabular}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\vspace{1cm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{5mm}<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B!&(B</span><span
lang=EN-US>{\bf </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BL>8E209)6HBg3X%[!<%`%Z!<%8$N%-%c%s%Q%90FFb(B</span><span
lang=EN-US>:}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\linebreak<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>http://www.nitech.ac.jp/campus/index.htm<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\newline<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$K$O!"0J2<$N>pJs$X$N%j%s%/$,D%$i$l$F$$$^$9!#(B</span><span
lang=EN-US>\newline<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1(B</span> <span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B=j:_CO!!!JL>9)Bg6a9Y$NCO?^$K$h$k0FFb$,$"$j$^$9!#(B</span><span lang=EN-US>),
\newline<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#2(B</span> <span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B8rDL0FFb!J<g$J8x6&8rDL5!4X$NO)@~?^$HL>9)Bg$^$G$N7PO)$N0FFb$,$"$j$^$9!#(B</span><span
lang=EN-US>),<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\newline<o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3(B</span> <span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B7zJ*G[CV?^!JL>9)BgI_COFb$N7zJ*$N0FFb$,$"$j$^$9!#!K(B</span><span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\vspace{3mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\vspace{10mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>{\large</span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B!!(B</span><span lang=EN-US>\bf<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i<T(B</span><span
lang=EN-US>:] Professor Mark Behrens, %Department of Mathematics, <o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>MIT<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1iBjL>(B</span><span
lang=EN-US>:] Topological automorphic forms<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\ \linebreak<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\hbox{</span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B9b<!85%2!<%8M}O@$H@5B'(B</span><span lang=EN-US>Casson</span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BITJQNL(B</span><span lang=EN-US>}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%Lecture series: <o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%"%V%9%H%i%/%H(B</span><span
lang=EN-US>:]  <o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will describe methods relating stable
homotopy groups of<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>spheres to the arithmetic of automorphic
forms.  There is a filtration<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>on the stable stems called the chromatic
filtration.  The first layer<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>may be detected by K-theory, and the second
layer may be detected by<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>the cohomology theory of Topological
Modular Forms (TMF).  After<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>reviewing how this works, I will describe
how the nth layer may be<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>studied using cohomology theories of
Topological Automorphic Forms<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>associated to Shimura varieties.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{3mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{center}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>  {\Large\bf </span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B%W%m%0%i%`(B</span><span lang=EN-US>}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{center}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\small<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\vspace{1mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#1F|!J7n(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B8a8e(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#1#09V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>%\vspace{1mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#3(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#5(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US>, %</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Number theoretic background}]\
\newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will survey Hilbert's 12th problem, which
asks for an explicit form<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>of class field theory, and explain how it
is solved in different<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>contexts using the muliplicative group,
moduli of elliptic curves, and<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>Shimura varieties.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#6(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#8(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US>, %</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Homotopy theoretic background}]\
\newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will review some aspects of the chromatic
filtration, and explain<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>how it is studied using the multiplicative
group and K-theory (first<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>layer), and moduli of elliptic curves
(second layer).<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#2F|!J2P(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B8aA0(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#0#39V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#2(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US>, %</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0#39V5A<<!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Classification of abelian
varieties in characteristic $p$}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will outline the Honda-Tate
classification of abelian varieties over<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>finite fields, using the concept of
$p$-divisible group.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#2F|!J2P(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B8a8e(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#0#39V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#3(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#5(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US>, %</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0#39V5A<<!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Tate modules and level
structures}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will describe some theorems regarding
Tate modules and how to<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>represent isogenies with the data of a
level structure.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#6(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#8(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US>, %</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0#39V5A<<!'(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Polarizations}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will review the theory of polarizations,
and classify polarizations<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>of abelian varieties over finite fields.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#3F|!J?e(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B8aA0(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#1#0!&#1#0#79V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\ <o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#9(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#2#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#2#0(B</span><span
lang=EN-US>, </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Shimura varieties}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>After briefly reviewing the notion of a
stack, I will define the<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>Shimura varieties we will be studying.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#0(B</span><span
lang=EN-US>, </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0#79V5A<<!'(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Deformation theory}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will discuss the deformation theory of
formal groups, p-divisible<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>groups, and mod p points of our Shimura
varieties.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#3F|!J?e(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$BCk(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#0#39V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#2(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#3(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US>, (</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B0lHL3X@88~$1(B</span><span
lang=EN-US>)</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BFCJL9V1i!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Wrapping spheres around
spheres}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will discuss the topological problem of
classifying ways to wrap<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>$n$-dimensional spheres around
$k$-dimensional spheres.  I will describe<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>the patterns that emerge in this
classification, and relate them to<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>some elementary number theory.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#4F|!JLZ(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B8a8e(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#1#09V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#3(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#5(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US>, </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Height $n$ locus}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will describe a zero dimensional
subvariety of particular importance<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>to the nth chromatic layer in homotopy
theory.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#6(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#8(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US>, </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Topological automorphic forms}]\
\newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will describe a generalization of the
Hopkins-Miller theorem (due to<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>Jacob Lurie) and explain how the
deformation theory allows us to<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>construct the cohomology theory of
Topological Automorphic forms<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>(TAF).<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[{\bf </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B#17n#2#5F|!J6b(B</span><span lang=EN-US>) </span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B8a8e(B</span><span lang=EN-US>: </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#5#2!&#5#39fEo#1#1#09V5A<<(B</span><span
lang=EN-US>}]<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#3(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#5(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0(B</span><span
lang=EN-US>, </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US>%,\qquad 15:40 $\sim$ 17:00 </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B9V1i#0#2(B</span>
<span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{$Q$-spectrum}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will show that the adelic points of a
unitary acts on TAF, the<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>homotopy fixed points of this action is a
spectrum $Q_U.$  This spectrum<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>$Q_U$ is the main object of interest. 
I will prove<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{enumerate}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item the spectrum admits a resolution
given by the action of U on its building<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item the $K(n)$-localization of $Q_U$ is
an approximation to the $n$th<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>chromatic layer in homtopy theory.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{enumerate}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#6(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US> $\sim$ </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#8(B</span><span
lang=EN-US>:</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#0#0(B</span><span
lang=EN-US>, </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#1#1#09V5A<<!'(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\underline{Examples}]\ \newline<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>I will describe some examples<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\begin{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[$n = 1:$] Class field theory and
K-theory<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[$n = 2:$] Basically reduces to
elliptic curve theory and TMF<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\item[$n = p-1:$] I will show that maximal
finite subgroups of the Morava<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>stabilizer group may be realized.<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\end{description}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{5mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>Behrens</span><span style='font-family:
"$B#M#S(B $B%4%7%C%/(B"'>$B$5$s$N$42wBz$rF@$F!$A49V1i$O(B</span><span lang=EN-US>Hard Disk</span><span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BIU$-%S%G%*%+%a%i$K$F<}O?$5$l$^$9!%(B</span><span lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$3$l$i$N%S%G%*%U%!%$%k$r$44uK>$NJ}$O!$==FsJ,$JMFNL$r;}$C$?(B</span><span
lang=EN-US>(</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#3#0#G(B</span><span
lang=EN-US>B</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$"$k$3$H$,(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BK>$^$7$$(B</span><span
lang=EN-US>)</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B#P#C$b$7$/$O%]!<%?%V%k$N(B</span><span
lang=EN-US>Hard Disk</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B$r$4;};22<$5$$!%(B</span><span
lang=EN-US><o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>

<p class=MsoNormal><span lang=EN-US>\vspace{8mm} \hspace{40mm}<o:p></o:p></span></p>

<p class=MsoNormal><span lang=EN-US>{\bf </span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BLd$$9g$o$;@h(B</span><span
lang=EN-US>}</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$B!'(B</span> <span
style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BFn(B</span> <span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BHOI'(B</span><span
lang=EN-US>  (</span><span style='font-family:"$B#M#S(B $B%4%7%C%/(B"'>$BL>8E209)6HBg3X!&$*$b$RNN0h!K(B</span><span
lang=EN-US> nori@nitech.ac.jp<o:p></o:p></span></p>

</div>

</body>

</html>