<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=iso-2022-jp">
<META content="MSHTML 6.00.2900.2963" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><FONT face="MS UI Gothic" size=2>
<DIV><FONT face="MS UI Gothic" size=2><FONT face="MS UI Gothic" size=2><FONT
size=3>$B$9$$$^$;$s!%F|Dx$,4V0c$C$F$$$^$7$?!%(B</FONT></FONT></FONT></DIV>
<DIV><FONT size=3>$B=$@5$7$?$b$N$rAw$j$^$9!%(B</FONT></DIV>
<DIV><FONT size=3></FONT> </DIV>
<DIV><FONT size=3>$B$4LBOG$r$*$+$1$7$F$9$$$^$;$s!%(B</FONT></DIV>
<DIV><FONT size=3></FONT> </DIV>
<DIV><FONT face="MS UI Gothic" size=2><FONT face="MS UI Gothic" size=2><FONT
size=3>=====================================================</FONT></FONT></FONT></DIV>
<DIV><FONT face="MS UI Gothic" size=2><FONT face="MS UI Gothic" size=2><FONT
size=3>$B4v2?3X4X78$N3'MM(B</FONT></FONT></FONT><FONT face="MS UI Gothic" size=2><FONT
face="MS UI Gothic" size=2><FONT size=3></DIV>
<DIV><BR>$B>.8&5f=82q!VB,CO@~5Z$S4XO"$9$k=tLdBj!W$r!$:#G/EY$O0J2<$N$h$&$K(B</DIV>
<DIV>$B7W2h$7$F$$$^$9!%$4;22C$$$?$@$1$l$P9,$$$G$9!%(B</DIV>
<DIV> </DIV><FONT size=2></FONT></FONT></FONT></FONT>
<DIV><FONT face="MS UI Gothic" size=2><FONT face="MS UI Gothic" size=2><FONT
size=3>$B0KF#?N0l(B</FONT></FONT></FONT></DIV>
<DIV><FONT face="MS UI Gothic"></FONT> </DIV>
<DIV><FONT face="MS UI Gothic" size=2><FONT face="MS UI Gothic" size=2><FONT
size=3><FONT size=2>
<DIV>$B!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s(B</DIV>
<DIV>$B8&5f2q!VB,CO@~5Z$S4XO"$9$k=tLdBj!W(B </DIV>
<DIV> </DIV>
<DIV>$BF|Dx!!(B2006$BG/(B 10$B7n(B 28$BF|(B($BEZ(B) 2:00$B$+$i(B 10$B7n(B 29$BF|(B($BF|(B)<BR>$B2q>l!!7'K\Bg3X650i3XItFb(B 219$BHV65<<(B</DIV>
<DIV> </DIV>
<DIV>$B%W%m%0%i%`(B</DIV>
<DIV><BR>$B#1#07n#2#8F|!JEZ!K(B<BR>14:00 -- 15:00 $B!!(BSorin Sabau $B!JKL3$F;El3$Bg3X!K(B<BR>$B!!!!!!!!!!!!!V(BOn the
Gauss-Bonnet theorem for Finsler manifolds </DIV>
<DIV>
with smooth boundary and related topics$B!W(B<BR>15:15 -- 16:15
$B!!1JLn9,0l!JElKLBg3X!K(B<BR>$B!!!!!!!!!!!!!V(BCAT(1)$B6u4V$N5a@Q2DG=@-!W(B<BR>16:45 -- 17:45 $B!!(BSimon Kokkendorff $B!J(BT.U.
Denmark$B!K(B<BR>$B!!!!!!!!!!!!!V(BDoes negative type characterize the round sphere?$B!W(B</DIV>
<DIV><BR>$B#1#07n#2#9F|!JF|!K(B<BR> 9:30 -- 10:00$B!!9SC]@6H~!J7'K\Bg3X650i3XIt(BM2)<BR>$B!!!!!!!!!!!!!V(BTotal
curvature and total torsion of open curves in space)$B!W(B<BR>10:15 --
10:45$B!!ED>eM:0l!J7'K\3X1`Bg3XIUB09b9;!K(B<BR>$B!!!!!!!!!!!!!V(BClosed geodesics on Platonic solids$B!W(B</DIV>
<DIV>11:00 -- 12:00 $B!!@6860l5H!J2,;3Bg3X!K(B<BR>$B!!!!!!!!!!!!!V%j%&%t%#%kB?MMBN$N%+%C%H%m!<%+%9$H%d%3%S>l!W(B<BR><BR>14:00 --
15:00$B!!(B $B7,EDOB@5!J$*Cc$N?eBg3X!K(B<BR>$B!!!!!!!!!!!!!V#T#B#A!W(B<BR>15:15 -- 16:15
$B!!7,9>0lMN!J7'K\Bg3X!K(B<BR>$B!!!!!!!!!!!!!V(BOn a Liouville theorem for harmonic maps to convex spaces
</DIV>
<DIV>
<DIV>
via Markov chains (Joint with K. Th. Sturm)$B!W(B<BR></DIV></DIV><FONT
face="MS UI Gothic" size=2></FONT>
<DIV><FONT face="MS UI Gothic" size=2></FONT> </DIV>
<DIV><FONT face="MS UI Gothic" size=2>
<DIV><FONT size=2>$B>l=j$H%"%/%;%9J}K!$K4X$7$F$O!$(B</FONT></DIV>
<DIV><FONT size=2><A
href="">http://www.kumamoto-u.ac.jp/campus-map/cmap-lst.htm</A>$B!!(B</FONT></DIV>
<DIV><FONT size=2>$B$r$4;2>H$/$@$5$$!%(B</FONT></DIV></FONT></DIV>
<DIV><FONT face="MS UI Gothic" size=2></FONT> </DIV>
<DIV><FONT face="MS UI Gothic" size=2>$BO"Mm@h(B</DIV>
<DIV>$B!!0KF#?N0l(B<BR>$B!!(BTel: 096-342-2593<BR>$B!!(BFax: 096-342-2595<BR>$B!!(BE-mail: <A
href="">j-itoh@kumamoto-u.ac.jp</A></DIV>
<DIV> </DIV>
<DIV> </DIV></FONT></FONT></FONT></FONT></FONT></DIV>
<DIV><FONT face="MS UI Gothic" size=2><FONT face="MS UI Gothic" size=2><FONT
size=3><FONT size=2></FONT><BR> </DIV>
<DIV><FONT
size=2></FONT> </DIV></FONT></FONT></FONT></FONT></DIV></BODY></HTML>