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STRING ORIENTATIONS OF ELLIPTIC COHOMOLOGY

MATTHEW ANDO

1. INTRODUCTION: THE WITTEN GENUS, AND THE STRING ORIENTATION OF ELLIPTIC COHOMOLOGY

A genus is a ring homomorphism
d)* . Q* - R*7

where (2, is a bordism ring. The so-called elliptic genera are genera taking there values in the rings which
arise in the study of elliptic curves, for example modular forms or Z[q].

Witten showed that elliptic genera of a manifold M typically arise as the one-loop amplitude of theory of
closed strings moving in M. As an example, he introduced the Witten genus

w : prm — Z[dq],
and gave a physical proof that if M is a spin manifold with & (M) = 0, then w(M) is a modular form of
level 1.

In algebraic topology, genera typically arise as the effect on homotopy rings of an orientation
¢: M — R,

where M is a bordism spectrum, and R is a commutative ring spectrum. The ring spectra R which are
appropriate for elliptic genera are the so-called elliptic spectra.
It turns out that the Witten genus plays a fundamental role in elliptic cohomology. Hopkins, Rezk, and
I have proved that every elliptic spectrum R receives a canonical map
M String — R,
naturally in the elliptic spectrum R. Even better, we construct a map

M String — tmf,

where tm f is the spectrum of “topological modular forms” of Goerss-Hopkins-Miller.
Some references for this material are [HBJ92, Wit87, Hop95, Hop02, AHS01].

2. ALGEBRAIC GEOMETRY OF EVEN-PERIODIC RING SPECTRA AND OF THE THOM ISOMORPHISM

A commutative ring spectrum F is “even periodic” if m; F' = 0 and w2 E contains a unit of 7, E. Any such
E is complex-orientable, so E°CCP> is the ring of functions on a formal group G'g. The splitting principle
gives a description of E°X in terms of the formal group G for many X built from CP>.

I will review this story, with a particular emphasis on the Thom isomorphism and applications to elliptic
cohomology. In particular, I will define an elliptic spectrum, and describe the result of Goerss-Hopkins-Miller.

Some references for this material are [AHS01, AHS04, Str99].
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3. UNITS OF RING SPECTRA AND ORIENTATIONS, WITH AN APPLICATION TO K-THEORY

If V is a vector bundle over a space X, and if R is a commutative ring spectrum, then R(X") is a “twisted
form” of R(X). The twist is classified by a map

f:X — BGL1R,

where BG L1 R is the classifying space of the “units” of R. The map f is the obstruction to orientation V in
R-theory.

I will review the classical obstruction theory for E., orientations of May-Quinn-Ray [May77], and use it
to describe the components of the space of E., maps

M Spin — KO.

4. TOPOLOGICAL MODULAR FORMS AND ITS LOCALIZATIONS

The construction of the string orientation
M String — tmf

proceeds much as in the M Spin — KO case, but requires some information about the Ly 1)tmf, where
K (1) is Morava K-theory. I will explain how to use the construction of Goerss-Hopkins-Miller to understand
Lgqytmf. Some information about congruences for Bernoulli numbers and modular forms will be useful, for
which some references are [Ada63, Ser73, Kat73, Kat75, Kob77].

5. THE STRING ORIENTATION

I shall show that there is an F., orientation
MString — tmf

which refines the Witten genus. Hopkins, Rezk, and I are preparing a paper on this material, but some idea
of the argument can be found in [Hop02].

6. THE EQUIVARIANT STRING ORIENTATION AND A SECOND CONSTRUCTION OF THE STRING ORIENTATION

Recently, Jacobi Lurie has given a very beautiful and conceptual construction of the string orientation
of tmf, using “derived algebraic geometry.” I shall describe joint work with John Greenlees, leading to a
conceptual construction of the string orientation for rational S!-equivariant elliptic cohomology. Our work
is in some sense a classical analogue of Lurie’s.

Lurie has summarized some of his results about elliptic cohomology in a paper available from his web
page, http://www.math.harvard.edu/~lurie/. The work with Greenlees is in preparation, but the starting
point was the papers [And03, Gre05].
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