名工大ホモトピー論集会06-1

文部科学省科学研究費基盤研究 (B)(1) 課題番号 16340015 (代表 南 範彦)

による研究集会を開催致しますのでご案内申し上げます。

日時 : 2006年7月5日(水) ~ 7月7日(金)

会場 : 名古屋市昭和区御器所町名古屋工業大学

共通23号棟(古墳のすぐ西)・共7講義室(水曜),共10講義室(木曜)

および,52号棟(教養キャンパス)103講義室(金曜)

・名 古 屋 工 業 大 学 ホ ー ム ペ ー ジ の キャン パ ス 案 内: http://www.nitech.ac.jp/campus/index.htm

には、以下の情報へのリンクが張られています。

- 1 所在地 (名工大近郊の地図による案内があります。),
- 2 交通案内(主な公共交通機関の路線図と名工大までの経路の案内があります。),
- 3 建物配置図(名工大敷地内の建物の案内があります。)

講演者: Professor Matthew Ando, University of Illinois at Urbana-Champaign, Urbana IL 61801

講演題名: STRING ORIENTATIONS OF ELLIPTIC COHOMOLOGY

プログラム

7月5日(水)午後:共通23号棟(古墳のすぐ西)・共7講義室

15:30 ~ 17:30 講演1

7月6日(木)午前:共通23号棟(古墳のすぐ西)・共10講義室

10:00 ~ 12:00 講演2

7月6日(木)午後:共通23号棟(古墳のすぐ西)・共10講義室

14:00 ~ 16:00 講演3, 16:30 ~ 18:30 講演4

7月7日(金) 午前: 52号棟(教養キャンパス)103講義室

10:00 ~ 12:00 講演5

問い合わせ先: 南 範彦 (名古屋工業大学・おもひ領域) nori@nitech.ac.jp

STRING ORIENTATIONS OF ELLIPTIC COHOMOLOGY

MATTHEW ANDO

1. Introduction: The Witten genus, and the string orientation of elliptic cohomology

A genus is a ring homomorphism

$$\phi_*: \Omega_* \to R_*,$$

where Ω_* is a bordism ring. The so-called *elliptic genera* are genera taking there values in the rings which arise in the study of elliptic curves, for example modular forms or $\mathbb{Z}[q]$.

Witten showed that elliptic genera of a manifold M typically arise as the one-loop amplitude of theory of closed strings moving in M. As an example, he introduced the Witten genus

$$w: \Omega^{Spin}_* \to \mathbb{Z}[\![q]\!],$$

and gave a physical proof that if M is a spin manifold with $\frac{p_1}{2}(M) = 0$, then w(M) is a modular form of level 1.

In algebraic topology, genera typically arise as the effect on homotopy rings of an orientation

$$\phi: M \to R$$
,

where M is a bordism spectrum, and R is a commutative ring spectrum. The ring spectra R which are appropriate for elliptic genera are the so-called elliptic spectra.

It turns out that the Witten genus plays a fundamental role in elliptic cohomology. Hopkins, Rezk, and I have proved that every elliptic spectrum R receives a canonical map

$$MString \rightarrow R$$
,

naturally in the elliptic spectrum R. Even better, we construct a map

$$MString \rightarrow tmf$$
,

where tmf is the spectrum of "topological modular forms" of Goerss-Hopkins-Miller.

Some references for this material are [HBJ92, Wit87, Hop95, Hop02, AHS01].

2. Algebraic geometry of even-periodic ring spectra and of the Thom isomorphism

A commutative ring spectrum E is "even periodic" if $\pi_1 E = 0$ and $\pi_2 E$ contains a unit of $\pi_* E$. Any such E is complex-orientable, so $E^0 \mathbb{C} P^{\infty}$ is the ring of functions on a formal group G_E . The splitting principle gives a description of $E^0 X$ in terms of the formal group G_E for many X built from $\mathbb{C} P^{\infty}$.

I will review this story, with a particular emphasis on the Thom isomorphism and applications to elliptic cohomology. In particular, I will define an elliptic spectrum, and describe the result of Goerss-Hopkins-Miller.

Some references for this material are [AHS01, AHS04, Str99].

Date: June 2006.

3. Units of ring spectra and orientations, with an application to K-theory

If V is a vector bundle over a space X, and if R is a commutative ring spectrum, then $R(X^V)$ is a "twisted form" of R(X). The twist is classified by a map

$$f: X \to BGL_1R$$
,

where BGL_1R is the classifying space of the "units" of R. The map f is the obstruction to orientation V in R-theory.

I will review the classical obstruction theory for E_{∞} orientations of May-Quinn-Ray [May77], and use it to describe the components of the space of E_{∞} maps

$$MSpin \rightarrow KO$$
.

4. Topological modular forms and its localizations

The construction of the string orientation

$$MString \rightarrow tmf$$

proceeds much as in the $MSpin \to KO$ case, but requires some information about the $L_{K(1)}tmf$, where K(1) is Morava K-theory. I will explain how to use the construction of Goerss-Hopkins-Miller to understand $L_{K(1)}tmf$. Some information about congruences for Bernoulli numbers and modular forms will be useful, for which some references are [Ada63, Ser73, Kat73, Kat75, Kob77].

5. The string orientation

I shall show that there is an E_{∞} orientation

$$MString \rightarrow tmf$$

which refines the Witten genus. Hopkins, Rezk, and I are preparing a paper on this material, but some idea of the argument can be found in [Hop02].

6. The equivariant string orientation and a second construction of the string orientation

Recently, Jacobi Lurie has given a very beautiful and conceptual construction of the string orientation of tmf, using "derived algebraic geometry." I shall describe joint work with John Greenlees, leading to a conceptual construction of the string orientation for rational S^1 -equivariant elliptic cohomology. Our work is in some sense a classical analogue of Lurie's.

Lurie has summarized some of his results about elliptic cohomology in a paper available from his web page, http://www.math.harvard.edu/~lurie/. The work with Greenlees is in preparation, but the starting point was the papers [And03, Gre05].

References

- [Ada63] J. F. Adams. On the groups J(X). I. Topology, 2:181–195, 1963. (and its sequels)
- [AHS01] Matthew Ando, Michael J. Hopkins, and Neil P. Strickland. Elliptic spectra, the Witten genus, and the theorem of the cube. *Inventiones Mathematicae*, 146:595–687, 2001, DOI 10.1007/s002220100175.
- [AHS04] Matthew Ando, Michael J. Hopkins, and Neil P. Strickland. The sigma orientation is an H_{∞} map. American Journal of Mathematics, 126:247–334, 2004, math.AT/0204053.
- [And03] Matthew Ando. The sigma orientation for analytic circle-equivariant elliptic cohomology. *Geometry and Topology*, 7:91–153, 2003, arXiv:math.AT/0201092.
- $[Gre05] \quad \text{J. P. C. Greenlees. Rational } S^1\text{-equivariant elliptic spectra. To appear in } \textit{Topology}, 2005, arXiv:math.AT/0504432.$
- [HBJ92] Friedrich Hirzebruch, Thomas Berger, and Rainer Jung. Manifolds and modular forms. Aspects of Mathematics, E20. Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum.
- [Hop95] Michael J. Hopkins. Topological modular forms, the Witten genus, and the theorem of the cube. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 554–565, Basel, 1995. Birkhäuser.
- [Hop02] M. J. Hopkins. Algebraic topology and modular forms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 291–317, Beijing, 2002. Higher Ed. Press, arXiv:math.AT/0212397.

- [Kat73] Nicholas M. Katz. P-adic properties of modular schemes and modular forms. In Modular functions of one variable III, Lecture Notes in Mathematics, pages 70–189. Springer, 1973.
- [Kat75] Nicholas M. Katz. p-adic L-functions via moduli of elliptic curves. In Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), pages 479–506. Amer. Math. Soc., Providence, R. I., 1975.
- [Kob77] Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, Vol. 58.
- [May77] J. Peter May. E_{∞} ring spaces and E_{∞} ring spectra. Springer-Verlag, Berlin, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave, Lecture Notes in Mathematics, Vol. 577.
- [Ser73] Jean-Pierre Serre. Formes modulaires et fonctions zêta p-adiques. In Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pages 191–268. Lecture Notes in Math., Vol. 350. Springer, Berlin, 1973.
- [Str99] Neil P. Strickland. Formal schemes and formal groups. In Homotopy invariant algebraic structures (Baltimore, MD, 1998), volume 239 of Contemp. Math., pages 263–352. Amer. Math. Soc., Providence, RI, 1999.
- [Wit87] Edward Witten. Elliptic genera and quantum field theory. Comm. Math. Phys., 109, 1987.

 $E ext{-}mail\ address: mando@math.uiuc.edu}$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA IL 61801