<!doctype html public "-//W3C//DTD W3 HTML//EN">
<html><head><style type="text/css"><!--
blockquote, dl, ul, ol, li { padding-top: 0 ; padding-bottom: 0 }
 --></style><title>$B%7%s%W%l%/%F%#%C%/4v2?3X(B</title></head><body>
<div>$B4v2?3X%a!<%j%s%0%j%9%H$N3'MM(B</div>
<div><br></div>
<div>$B<!$r4k2h$7$^$7$?$N$G$*CN$i$;$$$?$7$^$9!%(B</div>
<div><br></div>
<div>1$B!#Mh$k#67n#1#9F|!J7n!K$+$i#2#1F|!J?e!K$^$G(B</div>
<div><br></div>
<div>$B!V%7%s%W%l%/%F%#%C%/4v2?$H%H%]%m%8!<!W(B</div>
<div><br></div>
<div>$B$HBj$9$k%7%s%]%8%e!<%`$,ElBg6p>l$N?tM}2J3X8&5f2JBg9V5A<<(B</div>
<div>$B$G9T$o$l$^$9!#$H$/$K!"(BProf. R. Gompf $B$H(B Prof. P. Biran
$B$K$h$k(B</div>
<div>$B9V1i$,$"$j$^$9!#(B</div>
<div><br></div>
<div>$B!V$*CN$i$;!W$H!V%W%m%0%i%`!W$N(Bpdf$B%U%!%$%k$r$3$A$i(B</div>
<div><br></div>
<div>http://tmugs.math.metro-u.ac.jp/g-todai20060619/20060619.pdf</div
>
<div><br></div>
<div>$B$G$9!#(B</div>
<div><br></div>
<div
>$B<c43$NN9Hq$N1g=u$b2DG=$G$9!#$3$l$K$D$$$F$b!V$*CN$i$;!W$r$4Mw2<$5$$!#(B</div
>
<div><br></div>
<div>$B#2!#(BProf.  Biran
$B$K$h$kO"B39V1i!J#42s!K$,<sETBg3XEl5~$G9T$o$l$^$9!'(B</div>
<div><br></div>
<div>$BF|;~!'#6(B $B7n(B $B#1#2(B $BF|!J7n!K!<#1#3(B $BF|!J2P!K(B</div>
<div>($B#1#4!'#0#0!<#1#5!'#0#0!"#1#5!'#3#0!<#1#6!'#3#0(B)</div>
<div>$B>l=j!'<sETBg3XEl5~(B
$B!JFnBgBt!K#89f4[!JM}9)3X8&5f2J!K#63,#6#1#0<<(B</div>
<div><br></div>
<div><font face="Times" color="#000000">Title: Floer theory and its
applications<br>
<br>
Abstract: This series of lectures is dedicated to Lagrangian<br>
submanifolds and their special role in symplectic geometry.<br>
<br>
We shall start by introducing Lagrangian submanifolds and explain
how<br>
they appear in various problems of symplectic geometry,
Hamiltonian<br>
dynamics and algebraic geometry. Next we shall make a tour into
the<br>
zoo of geometric phenomena related to Lagrangians, their topology
and<br>
their intersections properties. We shall then explain the
mathematical<br>
techniques and (infinite dimensional) Morse theory developed to
study<br>
Lagrangian submanifolds. In particular we shall outline Floer's<br>
theory, as well as its further recent extensions. Finally we shall<br>
present recent applications of the theory of Lagrangian
submanifolds<br>
to questions arising in pure algebraic geometry and
singularity</font></div>
<div><font face="Times" color="#000000">theory.</font></div>
<div><br></div>
<div>$B$4;22CD:$1$l$P9,$$$G$9!#(B</div>
<div><br></div>
<div>$B%^!<%F%#%s!!%2%9%H(B</div>
<div>$B<sETBg3XEl5~(B</div>
<div>$BM}9)3X8&5f2J(B</div>
<div>$B?tM}>pJs2J3X@l96(B</div>
</body>
</html>