<HTML>
<HEAD>
<TITLE>Contact Geometry</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<TT>$B4X78<T3F0L(J<BR>
$BKL3$F;650iBg3XH!4[9;$K$F3+:EM=Dj$N(J<BR>
$B@\?(9=B$$N8&5f=82q$N%W%m%0%i%`$r0l1~(J<BR>
$B:n$j$^$7$?$N$GG[?.$7$^$9!%(J<BR>
$B$*6a$/$N4X78<T$X$bG[?.$7$F$/$@$5$$!%(J<BR>
<BR>
</TT>$B;38}2B;0(J<BR>
<TT><BR>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<BR>
\documentclass[a4paper,12pt]{jarticle}<BR>
%\usepackage{amsmath, amssymb}<BR>
\setlength\textwidth{15cm}<BR>
\setlength\textheight{23cm}<BR>
\hoffset=-1.0cm<BR>
\pagestyle{empty}<BR>
<BR>
%%%%%%    TEXT START    %%%%%%<BR>
\begin{document}<BR>
<BR>
\begin{center}{\Large \gt<BR>
$B%7%s%]%8%&%`!V@\?(9=B$!$FC0[E@!$8EE5E*HyJ,4v2?3X!W3+:E$N$*CN$i$;(J}<BR>
\end{center}<BR>
\par<BR>
$B@$OC?M!'@P@n9dO:!$@t20<~0l!$;38}2B;0!JKLBgM}!K!$:XF#9,;R!JKL65BgH!4[9;!K(J<BR>
\par\noindent<BR>
$BF|K\3X=Q?66=2q2J3X8&5fHq(J $B4pHW8&5f(J(B) (2)($BBeI=<T!'@P@n9dO:!K!$(J $B4pHW8&5f(J<BR>
(A) (2)<BR>
$B!JBeI=<T!'@t20!!<~0l!K5Z$S(J<BR>
$B!!4pHW8&5f(J(A)(1)($BBeI=<T!'(J $B;38}2B;0!K$=$NB>$N1g=u$K$h$kI85-%7%s%]%8%&%`$r(J<BR>
$B2<5-$NMWNN$G(J<BR>
$B3+:ECW$7$^$9$N$G$40FFb?=$7>e$2$^$9!%(J<BR>
\par<BR>
\vspace{18pt}<BR>
\noindent<BR>
$BF|Dx!!(J2002$BG/(J1$B7n(J22$BF|!J2P!K(J13$B;~(J30$BJ,$+$i(J 1$B7n(J25$BF|!J6b!K(J12$B;~(J 00 $BJ,(J $B$^$G(J<BR>
\par\noindent<BR>
$B>l=j!!!!!!KL3$F;650iBg3XH!4[9;!!#49f4[!!FCJL65<<!J(J4-104$B!K(J<BR>
\par\noindent<BR>
$B!!!!!!!!!!H!4[;TH,H(D.(J1-2<BR>
\par\noindent<BR>
$B!!!J(JJR$BH!4[1X$+$i%P%9$G#1#5J,!$!V5\A0D.!W2<<V!$ELJb#7J,!%H!4[6u9A$+$i(JJR$BH!(J<BR>
$B4[1X$^$G$O!$%P%9$GLs#2#5J,!%(J<BR>
$BKL3$F;650iBg3X%[!<%`%Z!<%8(J<BR>
\begin{center}<BR>
$B!J(Jwww.hokkyoudai.ac.jp/100\_annai/110\_syokai/index.html$B!K(J<BR>
\end{center}<BR>
$B$r;2>H$N$3$H!K!%(J<BR>
<BR>
\begin{center}<BR>
\bf                            $B%W%m%0%i%`(J<BR>
\end{center}<BR>
1$B7n(J22$BF|(J($B2P(J)\par<BR>
13:30$B!A(J14:30$B!!;0>>2BI'(J($BCf1{BgM}9)!K(J\par<BR>
$B!!!!!!!!#T#B#A(J<BR>
\par\vspace{12pt}<BR>
<BR>
14:50$B!A(J15:50$B!!MaK\(J $B7{!JKLBgM}!&Gn;N#3G/!K(J\par<BR>
$B!!!!%m!<%l%s%DB?MMBN>e$NA4B,COE*MUAX(J<BR>
\par\vspace{12pt}<BR>
16:10$B!A(J17:10$B!!9b@%(J $B>-F;!JElBg?tM}!&8&5f@8!K(J\par<BR>
$B!!!!$O$a9~$_$N@5B'%[%b%H%T!<N`$HFC0[(JSeifert$BKl(J<BR>
\par\vspace{12pt}<BR>
<BR>
\noindent<BR>
1$B7n(J23$BF|(J($B?e(J)\par<BR>
9:45$B!A(J10:45$B!!J!ED(J $BBs@8!JF|BgJ8M}!K(J\par<BR>
$B!!!!(JIntegrable Manifolds $B$K$J$k$?$a$N>r7o$K$D$$$F$NFC0[E@O@$+$i$N9M;!(J  <BR>
\par <BR>
$B!!!!(J(joint work with S. Janeczko)<BR>
\par\vspace{12pt}<BR>
11:00$B!A(J12:00$B!!jj!!El2O!JKLBgM}!&3X?6309q?MFCJL8&5f0w!K(J\par<BR>
$B!!!!(JThe lightcone Gauss maps of a spacelike surface in Minkowski 4-space<BR>
\par <BR>
$B!!!!(J(joint work with S. Izumiya and M. C. Romero Fuster)$B!!!!!!!!!!(J<BR>
$B!!!!(J<BR>
\par\vspace{12pt}<BR>
\newpage<BR>
13:30$B!A(J14:30$B!!BgDM(J $BIYH~;R!J0q>kBg3X!K(J\par<BR>
$B!!!!J?C3$J#2<!85B?LLBN$K$D$$$F(J<BR>
\par\vspace{12pt}<BR>
14:45$B!A(J15:45$B!!9b66(J $B2mJ~!JKLBgM}!&=$;N#2G/!K(J\par<BR>
$B!!!!(JBifurcations of Clairaut type equations<BR>
\par\vspace{12pt}<BR>
16:00$B!A(J17:00$B!!1]K\0lG7!JEl5~M}2JBgD9K|It9;!K(J\par<BR>
$B!!!!@dBPA46JN($r:G>.$K$9$k6J@~$N7A(J<BR>
\par\vspace{12pt}<BR>
\noindent<BR>
1$B7n(J24$BF|(J($BLZ(J)\par<BR>
9:45$B!A(J10:45$B!!(JMohan Bhupal ($BKLBgM}!&3X?6309q?MFCJL8&5f0w!K(J\par<BR>
$B!!!!(JA generalisation of the Morse inequalities<BR>
\par\vspace{12pt}<BR>
11:00$B!A(J12:00$B!!(JS. Bouarroudj( $B7D1~Bg!&3X?6309q?MFCJL8&5f0w(J)<BR>
\par<BR>
$B!!>l9g$K$h$C$F$O!!A0ED5H><!J7D1~BgM}9)!K(J<BR>
$B!!(J\par$B!!!!!!!!!!#T#B#A(J<BR>
\par\vspace{12pt}<BR>
13:30$B!A(J14:30$B!!9u@n9/9(!JF;9)Bg!&Hs>o6P9V;U!K(J\par<BR>
$B!!!!(JOn differential equations of asymptotic lines of surfaces in $R^4$<BR>
\par\vspace{12pt}<BR>
14:45$B!A(J15:45$B!!?9!!=_=(!JBg:eBgM}!&8&5f@8!K(J\par<BR>
$B!!!!(JWeakly fillable $T^3$ as certain branched coverings of $S^3$<BR>
\par\vspace{12pt}<BR>
16:00$B!A(J17:00$B!!>.NS(J $BBgJe!JC^GHBg3X!&Gn;N#1G/!K(J\par<BR>
$B!!!!@\?(9=B$$H(Jgeneralized Tanaka-Webster $B@\B3!!!!!!!!(J<BR>
 \par\vspace{12pt}<BR>
\noindent<BR>
1$B7n(J25$BF|(J($B6b(J)\par<BR>
9:45$B!A(J10:45$B!!BgK\!!5|!J</;yEgBg3XM}!K(J<BR>
\par<BR>
$B!!!!(JFirst order Vassiliev-type invariants for planar fronts and <BR>
\par <BR>
$B!!!!(Japparent contours of surfaces<BR>
\par\vspace{12pt}<BR>
11:00$B!A(J12:00$B!!(JV. M. Zakalyukin (Moscow aviation insitute) \par<BR>
$B!!!!!!!!!!(JTBA<BR>
%\par\vspace{12pt}<BR>
%14:50$B!A(J15:50$B!!(J\par<BR>
$B!!!!!!!!(J<BR>
\par\vspace{12pt}<BR>
<BR>
$BO"Mm@h!'@t20!!<~0l!J(Jizumiya@math.sci.hokudai.ac.jp$B!K(J<BR>
              \par<BR>
              $BKL3$F;Bg3X!&Bg3X1!M}3X8&5f2J(J<BR>
              \par<BR>
$B!!!!!!!!(JPhone  011-706-5311($BD>DL(J)<BR>
\vspace{12pt}<BR>
\par<BR>
$B!!!!!!!JBh#2F|L\(J23$BF|M<9o$K:)?F2q$r9T$&M=Dj$G$9!K(J<BR>
\end{document}<BR>
<BR>
</TT><BR>
------------------------------------------------<BR>
Department of Mathematics,<BR>
Hokkaido University,<BR>
Sapporo 060-0810, JAPAN<BR>
Fax 81-11-717-9303<BR>
E-mail: yamaguch@math.sci.hokudai.ac.jp<BR>
-------------------------------------------------<BR>
</BODY>
</HTML>