[geometry-ml:05794] OCAMI 微分幾何学セミナー 2024/07/19
TAMARU, Hiroshi
tamaru @ omu.ac.jp
2024年 7月 13日 (土) 23:51:38 JST
幾何学 ML のみなさま:
大阪公立大学の田丸です。
下記の要領で OCAMI 微分幾何学セミナー
https://www.omu.ac.jp/orp/ocami/activities/seminars/dg/
を開催します。会場は大阪公立大学杉本キャンパスです。
みなさまの参加をお待ちしております。
どうぞよろしくお願いいたします。
*****
日時 2024年7月19日(金)16:45-18:15
講演者(所属) Wafaa Batat (Ecole Nationale Polytechnique d'Oran Maurice
Audin)
タイトル Homogeneous Structures on Three- and Four-dimensional Lie groups
場所 理学部F棟4階 小講究室B(F405)
アブストラクト In this talk, we will introduce the notion of homogeneous
pseudo-Riemannian structures and demonstrate how to establish
homogeneity and natural reductiveness of 3- and 4-dimensional Lie groups
through a tensor satisfying certain geometric partial differential
equations involving the metric and the curvature of a given manifold.
These equations are known as Ambrose-Singer equations. We will begin by
examining homogeneous structures on three-dimensional unimodular and
non-unimodular Lie groups, proving the existence of homogeneous
Lorentzian structures that differ from the canonical ones without being
naturally reductive, a phenomenon with no Riemannian counterpart. Using
these homogeneous structures, we will show how to classify naturally
reductive 3-dimensional Lorentzian manifolds. Our focus will then shift
to the geometric properties of four-dimensional nilpotent Lie groups
endowed with a family of non-flat left-invariant Lorentzian metrics. We
will conduct a comprehensive classification of homogeneous structures
for each metric and meticulously examine the distinctive properties
characterizing each structure. Additionally, we will provide a specific
example demonstrating the presence of a naturally reductive, non-flat,
left-invariant Lorentzian metric on the 2-nilpotent Lie group, where the
center exhibits degeneracy. Furthermore, we will establish the existence
of a non-canonical homogeneous structure. As an application, we will
demonstrate the existence of naturally reductive left-invariant
Lorentzian metrics on the four-dimensional 3-nilpotent Lie group.
--
田丸博士
大阪公立大学理学研究科
---
Hiroshi TAMARU
Osaka Metropolitan University
https://www.omu.ac.jp/sci/tamaru/
Geometry-ml メーリングリストの案内