[geometry-ml:05541] 千葉大学幾何学セミナーのお知らせ(2/6, Matthew Habermann氏)

二木昌宏 futaki @ faculty.gs.chiba-u.jp
2024年 1月 30日 (火) 09:44:26 JST


幾何学MLの皆様

千葉大学の二木と申します.
下記の要領で千葉大学幾何学セミナーを行います.
(重複して受け取られた場合はご容赦ください. )
本セミナーはオンライン開催です. メールの末尾にある登録URLからご登録頂いた方にZoom配信URLをお送りします.  なお特記無き場合,
千葉大学幾何学セミナーは夏までの間同じURLで配信します.

2024年2月6日(火)午後6時〜午後7時半 JST(10:00-11:30 CET)
場所:オンライン(Zoom)
講演者:Matthew Habermann(Univ. Hamburg)
題目:Homological Berglund–Hübsch–Henningson mirror symmetry for curve
singularities
アブストラクト:Invertible polynomials are a class of hypersurface singularities
which are defined in an elementary way from square matrices with
non-negative integer coefficients. Berglund–Hübsch mirror symmetry posits
that the polynomials defined by a matrix and its transpose should be mirror
as Landau–Ginzburg models, and an extension of this idea due to Berglund
and Henningson postulates that this equivalence should respect equivariant
structures. Unfortunately, due to difficulties in incorporating
equivariance in symplectic geometry, the category on the symplectic side of
this conjecture is not yet defined. To circumvent this, Futaki and Ueda
take inspiration from the crepant resolution conjecture to suggest a
reformulation which trades equivariance for non-exactness. In this talk, I
will begin by giving some background and context for the problem, and then
explain my recent work on proving the conjecture of Futaki and Ueda.

Key words: Orbifold Fukaya--Seidel category, non-exact symplectic manifold,
matrix factorisation.

世話人:梶浦宏成, 二木昌宏

登録URL:
https://docs.google.com/forms/d/1FuesHmJVjtH285xeRTR7IFRIStEIua0v44QXercFjEs/edit
セミナーのページ:https://sites.google.com/site/masahirofutaki/home/geometry-chiba

二木昌宏
Masahiro FUTAKI
Department of Mathematics and Informatics,
Graduate School of Science, Chiba University
1-33 Yayoi-cho, Inage, Chiba, 2638522 Japan

-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20240130/afbb1019/attachment.html>


Geometry-ml メーリングリストの案内