[geometry-ml:05354] 岡数学研究所セミナ−(9/25)のご案内【更新】
matsuzawa
matsuzawa @ cc.nara-wu.ac.jp
2023年 9月 24日 (日) 12:47:18 JST
皆様
先にお知らせ致しました明日9月25日のセミナ−の
プログラムが更新されましたのでお知らせ致します。
直前のご連絡となり申し訳ありません。
松澤淳一
〒630-8506 奈良市北魚屋西町
奈良女子大学 岡数学研究所
Phone: 0742-20-3361 (研究室)
FAX: 0742-20-3367 (事務室)
matsuzawa @ cc.nara-wu.ac.jp
ーーーーーーーーーーーーーーーーーーーーーーーーーーー
Seminar in Oka Mathematical Institute
日時 9月25日(月)
場所 奈良女子大学理学系B棟4階 B1403(第3セミナー室)
Speakers and Titles
10 : 30 − 11 : 30
Boris Doubrov( Belarus State University)
Equivalence of bracket-generating vector distributions via control theory
13 : 30 − 14 : 30
Toshihisa Kubo( Ryukoku University)
On the equivariant differential operators for SL(3,R) with maximal parabolic subgroup
15 : 00 − 16 : 00
Masanori Adachi(Shizuoka University)
A review on Levi-flat hypersurfaces and Bergman spaces
Abstracts
B. Doubrov
T itle: Equivalence of bracket-generating vector distributions via control
theory
A bstract: We canonically associate a pseudo-product structure with any
bracket-generating distribution. Under some additional non-degeneracy
conditions one can use the linearization principle and study these struc-
tures via systems of linear ODEs whose solution space possesses an
invari- ant symplectic form, The symbol of such linear systems is described
by a homogeneous element of degree -1 in the Lie algebra sp(2n, R) equipped
with an arbitrary parabolic grading. We show how such elements can be ef-
fectively classified. In case of (2,3,5) distributions this construction leads to
a pseudo-product structure modeled by the parabolic homogeneous space
G2/B where B is the Borel subgroup.
T.Kubo
Title: On the equivariant differential operators for SL(3,R) with maximal
parabolic subgroup
Abstract: Let G ⊃ P be a real simple Lie group and a parabolic sub- group,
respectively. For finite dimensional representations Vi (i = 1, 2) of P ,
let Vi → G/Pdenote the G-equivariant homogeneous vector bun-dle
Vi over G/P with fiber Vi. Differentialoperators D : C∞(G/P, V1) → C∞(G/P, V2)
are said to be equivariant (or covariant orintertwining) if D is equivariant under
the actions of G on C∞(G/P, Vi) (i = 1, 2). A classicalexample of such an
operator is the wave operator □3,1 on the Minkowski space R3,1 of
signature (3, 1). Equivariant differential operators are impor- tant objects
in both representation theory and parabolic geometry. In this talk we shall
discuss a classification and explicit construction of equivariant differential
operators for the following setting:(G, P ; V1, V2) = (SL(3, R), P1,2; Fn, Fm).
Here, P1,2 is the maximal parabolic subgroup corresponding to the partition
(1, 2), and Fn(resp. Fm) is the finite dimensional irreducible representation
of P1,2 of dimension n (resp. m). This is based on joint work in progress with
Bent Orsted.
M. Adachi
Title: A review on Levi-flat hypersurfaces and Bergman spaces
Abstract: A smooth real hypersurface in a complex manifold is said to be
Levi-flat if its Levi form vanishes identically. In contrast to strictly pseudoconvex
real hypersurfaces, where CR structure induces contact structure, Levi-flat
hypersurfaces are endowed with foliations and their dynamical properties govern
the behavior of holomorphic functions on the domains bounded by these hypersurfaces.
A central topic in the study of Levi-flat hypersurfaces is the non-existence
problem of Levi-flat hypersurface in the complex projective plane. In my old work
with Brinkschulte, we tried an approach to this problem via the study of Bergman
spaces on the complement of the hypothetical Levi-flat hypersurface. In this talk,
after reviewing this attempt, I would like to explain my computational result on the
structure of Bergman spaces of domains bounded by the unit tangent bundle of
hyperbolic Riemann surfaces.
Geometry-ml メーリングリストの案内