[geometry-ml:05290] BΓ School IV program

yoshi @ math.chuo-u.ac.jp yoshi @ math.chuo-u.ac.jp
2023年 8月 10日 (木) 13:01:29 JST


皆様; (重複して受け取られた際にはご容赦ください。)

BΓ School IV プログラムのご案内です。

葉層構造のホモトピー論に関する研究集会 BΓ School IV を
下記の要領で開催いたします。
今回は、Mather-Thurston 理論を中心に周辺のトピックスも含めた
講演を企画しています。

日時:2023年9月4日(月)11:00~9月7日(木)17:00
場所:中央大学理工学部(東京都文京区春日1-13-27)
https://www.math.chuo-u.ac.jp/

プログラムと tentative titles は以下の通りです。

連絡先:
 三松 佳彦(中大・理工)   : yoshi @ math.chuo-u.ac.jp
 北野 晃朗(創価大・理工) : kitano @ soka.ac.jp

招待講演者:
Gaël Meigniez (Aix-Marseille U.)
Sam Nariman (Purdue U.)
Elmar Vogt (Free U. Berlin)
Shigeyuki Morita (U. Tokyo)
Takashi Tsuboi (Musashino U.)
Hitoshi Moriyoshi (Nagoya U.)
Yoshihiko Mitsumatsu (Chuo U.)
Teruaki Kitano (Soka U.)

プログラム、アブストラクトの詳細については再度、近日中に
https://www.math.chuo-u.ac.jp/BGamma/index.html
にて、または e-mail にてご案内申し上げます。

皆様のご参加をお待ちしております。

BΓ School IV 組織委員会  三松 佳彦、北野 晃朗


           TIME SCHEDULE 

9/4(月)
11:00-12:20 Gaël Meigniez -1

14:00-15:20 坪井 俊
15:50-17:10 Elmar Vogt -1

9/5(火)
10:00-11:20 北野 晃朗
11:40-12:40 森田 茂之

14:00-15:00 option

9/6(水)
10:00-11:00  Elmar Vogt -2
11:20-12:20 三松 佳彦 -1

14:00-15:20 Gaël Meigniez -2
15:50-17:10 Sam Nariman -1


9/7(木)
10:00-11:00 三松 佳彦 -2
11:20-12:20 森吉 仁志

14:00-15:20 Sam Nariman -2
15:50-17:10 Gaël Meigniez -3

17:30 Banquet
================

TITLES and ABSTRACTS  (tentative)

Gaël Meigniez : 
  1 "BGamma basics"  
       Abstract: this will be an elementary, introducory microcourse 
          on the classical homotopy theory of foliations:
          Bott's obstructions, Godbillon-Vey, BGamma, 
          the h-principle for foliations, the Mather-Thurston theory,
          and the Haefliger-Thurston conjecture.
  2 "Homotopy types of foliations spaces by surfaces"
       Abstract: It will be shown that 
          on every closed manifold of dimension at least 4, the space of 
          the smooth foliations of dimension 2 has the same weak homotopy type 
          as the space of the distributions of 2-planes.

坪井 俊 : TBA

Elmar Vogt : Tentative title : Proof of the Mather-Thurston theorem 

北野 晃朗 : Remarks on flat $S^1$-bundles, C^\infty vs C^\omega

森田 茂之 : Questions on B\overline{\Gamma}_1

三松 佳彦 : Mather-Thurston maps for the flat real analytic circle bundles.
       Abstract: Under the real analytic setting, there is no reason for 
          the Mather-Thurston map to induce isomorphism on the homology.  
          In the case of codimension 1, and for flat circle bundles, 
          we show that a difference from and a similarity to being isomorphic 
          in homology or in homotopy of the Mather-Thurston map. 
          One of the key ingredient is a fine analysis on the 1-dimensional 
          real analytic diffeo germs by 1-dimensional holomorphic dynamics, 
          namely the theory of parabolic linearization. 
          This is based on a joint work 
          with Shigeyuki Morita and Teruaki Kitano.

Sam Nariman : TBA

森吉 仁志 : Geometry on the circle diffeomorphism group and 
             the space of equicentroaffine curves
       Abstract : A plane curve \gamma: S^1 \to R^2 is called 
          equi-centro-affine if the position vector \gamma 
          and the velocity vector \gamma' makes a triangle of constant area  
          with respect to the origin. In other words, 
          the determinant of  2 by 2 matrix (\gamma \gamma') is constant. 
          Even though the space M of all equicentroaffine curves 
          is infinite dimensional, M admits a transitive action by the circle 
          diffeomorphism group due to Pinkall. It is also known that there 
          exists an invariant pre-symplectic form on M, 
          called the Fujioka-Kurose 2-form.  
          In this talk we shall manifest an intriguing interaction between 
          Geometry and Analysis, namely a beautiful relationship 
          among curvature of equicentroaffine curves,  moment map, 
          the Bott-Virasoro group and the KdV equation.  
          This is a joint work with A. Fujioka and T. Kurose.
============================================================================





Geometry-ml メーリングリストの案内