[geometry-ml:05290] BΓ School IV program
yoshi @ math.chuo-u.ac.jp
yoshi @ math.chuo-u.ac.jp
2023年 8月 10日 (木) 13:01:29 JST
皆様; (重複して受け取られた際にはご容赦ください。)
BΓ School IV プログラムのご案内です。
葉層構造のホモトピー論に関する研究集会 BΓ School IV を
下記の要領で開催いたします。
今回は、Mather-Thurston 理論を中心に周辺のトピックスも含めた
講演を企画しています。
日時:2023年9月4日(月)11:00~9月7日(木)17:00
場所:中央大学理工学部(東京都文京区春日1-13-27)
https://www.math.chuo-u.ac.jp/
プログラムと tentative titles は以下の通りです。
連絡先:
三松 佳彦(中大・理工) : yoshi @ math.chuo-u.ac.jp
北野 晃朗(創価大・理工) : kitano @ soka.ac.jp
招待講演者:
Gaël Meigniez (Aix-Marseille U.)
Sam Nariman (Purdue U.)
Elmar Vogt (Free U. Berlin)
Shigeyuki Morita (U. Tokyo)
Takashi Tsuboi (Musashino U.)
Hitoshi Moriyoshi (Nagoya U.)
Yoshihiko Mitsumatsu (Chuo U.)
Teruaki Kitano (Soka U.)
プログラム、アブストラクトの詳細については再度、近日中に
https://www.math.chuo-u.ac.jp/BGamma/index.html
にて、または e-mail にてご案内申し上げます。
皆様のご参加をお待ちしております。
BΓ School IV 組織委員会 三松 佳彦、北野 晃朗
TIME SCHEDULE
9/4(月)
11:00-12:20 Gaël Meigniez -1
14:00-15:20 坪井 俊
15:50-17:10 Elmar Vogt -1
9/5(火)
10:00-11:20 北野 晃朗
11:40-12:40 森田 茂之
14:00-15:00 option
9/6(水)
10:00-11:00 Elmar Vogt -2
11:20-12:20 三松 佳彦 -1
14:00-15:20 Gaël Meigniez -2
15:50-17:10 Sam Nariman -1
9/7(木)
10:00-11:00 三松 佳彦 -2
11:20-12:20 森吉 仁志
14:00-15:20 Sam Nariman -2
15:50-17:10 Gaël Meigniez -3
17:30 Banquet
================
TITLES and ABSTRACTS (tentative)
Gaël Meigniez :
1 "BGamma basics"
Abstract: this will be an elementary, introducory microcourse
on the classical homotopy theory of foliations:
Bott's obstructions, Godbillon-Vey, BGamma,
the h-principle for foliations, the Mather-Thurston theory,
and the Haefliger-Thurston conjecture.
2 "Homotopy types of foliations spaces by surfaces"
Abstract: It will be shown that
on every closed manifold of dimension at least 4, the space of
the smooth foliations of dimension 2 has the same weak homotopy type
as the space of the distributions of 2-planes.
坪井 俊 : TBA
Elmar Vogt : Tentative title : Proof of the Mather-Thurston theorem
北野 晃朗 : Remarks on flat $S^1$-bundles, C^\infty vs C^\omega
森田 茂之 : Questions on B\overline{\Gamma}_1
三松 佳彦 : Mather-Thurston maps for the flat real analytic circle bundles.
Abstract: Under the real analytic setting, there is no reason for
the Mather-Thurston map to induce isomorphism on the homology.
In the case of codimension 1, and for flat circle bundles,
we show that a difference from and a similarity to being isomorphic
in homology or in homotopy of the Mather-Thurston map.
One of the key ingredient is a fine analysis on the 1-dimensional
real analytic diffeo germs by 1-dimensional holomorphic dynamics,
namely the theory of parabolic linearization.
This is based on a joint work
with Shigeyuki Morita and Teruaki Kitano.
Sam Nariman : TBA
森吉 仁志 : Geometry on the circle diffeomorphism group and
the space of equicentroaffine curves
Abstract : A plane curve \gamma: S^1 \to R^2 is called
equi-centro-affine if the position vector \gamma
and the velocity vector \gamma' makes a triangle of constant area
with respect to the origin. In other words,
the determinant of 2 by 2 matrix (\gamma \gamma') is constant.
Even though the space M of all equicentroaffine curves
is infinite dimensional, M admits a transitive action by the circle
diffeomorphism group due to Pinkall. It is also known that there
exists an invariant pre-symplectic form on M,
called the Fujioka-Kurose 2-form.
In this talk we shall manifest an intriguing interaction between
Geometry and Analysis, namely a beautiful relationship
among curvature of equicentroaffine curves, moment map,
the Bott-Virasoro group and the KdV equation.
This is a joint work with A. Fujioka and T. Kurose.
============================================================================
Geometry-ml メーリングリストの案内