[geometry-ml:05282] 武蔵野大学MCMEセミナー第60回記念 8/28(月)のお知らせ
TSUBOI Takashi
mail @ tsuboi-takashi.sakura.ne.jp
2023年 8月 7日 (月) 12:58:44 JST
幾何学、力学系、トポロジー メーリングリストの皆様
クロスポストをご容赦ください。
武蔵野大学数理工学センターでは,次のように第60回記念MCMEセミナー
https://www.musashino-u.ac.jp/research/laboratory/mathematical_engineering/seminar_symposium.html
を開催いたします.
参加をご希望の方は,ウェブページ内の「参加申し込みフォーム」より8/26(土)
までに参加登録をお願いいたします.
皆様のご参加をお待ちしております.
武蔵野大学数理工学センター
坪井 俊
====== 第60回記念MCMEセミナー ハイブリッド開催のご案内 ======
開催日時:2023年8月28日(月)13:30ー16:40
開催地 :武蔵野大学有明キャンパス 5号館401教室
参加登録URL:https://forms.gle/n7VZGmxcnDracDtG9
参加登録締切:8月26日
講演者:Takeshi Takaishi 氏 (Musashino Univ.),Atsushi Suzuki 氏 (Osaka Univ. / RIKEN) ,Pierre Jolivet 氏(CNRS)
タイトル:FreeFEM - now and in the future
13:30 - 14:00 Takeshi Takaishi (Musashino Univ.) :
“Introducing some simple problems to solve with FreeFEM”
FreeFEM is a popular 2D and 3D partial differential equation (PDE) solver used by thousands of researchers worldwide.
This makes it easy to implement your own mathematical models using simple scripts. We will see its capabilities through some examples.
14:10 - 14:55 Atsushi Suzuki (Osaka University / RIKEN):
“Variational problem with constraint and linear solvers for indefinite problem”
Variational setting is the mathematical foundation of the finite element methods for several industrial problems.
It is sometimes necessary to deal with problem with constraint, e.g., in fluid problem, Navier-Stokes equations contain incompressibility constraint.
The discretized equations are expressed by a KKT system whose coefficient matrix is indefinite.
We will view robustness and efficiency of the GMRES method with preconditioner based on LDU-factorization with proper pivoting strategy to avoid
instability from the indefiniteness.This methodology is also applicable to inequality constraint problem appeared in a shape optimization problem.
15:10 - 16:40 Pierre Jolivet (CNRS) :
“Deep dive into FreeFEM ecosystem”
One of the strengths of FreeFEM is its ability to interact seamlessly with many other scientific libraries, such as MPI for parallel computing,
PETSc for (mostly) linear algebra, SLEPc for eigenvalue computation, or HPDDM for domain decomposition methods. In this presentation,
I will highlight some design decisions made over the years in order to enable researchers and developers to use FreeFEM as a flexible tool
to prototype or implement algorithms, preconditioners,or coupled solvers in different applied fields such as computational fluid dynamics,
radiative transfer, solid mechanics.
=============================================================
主催:武蔵野大学 数理工学センター(MCME)
Geometry-ml メーリングリストの案内