[geometry-ml:05191] 早稲田大学 幾何学セミナー (Osuga氏, Raujouan氏)

m guest marguemg22 @ gmail.com
2023年 6月 5日 (月) 13:03:04 JST


幾何学分科会メーリングリストの皆様

下記のようにセミナーを開催いたしますのでご案内申し上げます。

場所:早稲田大学 西早稲田キャンパス 51-17-08
日程:2023年6月7日  (水)(15:30 -17:00)

講演者:Kento Osuga (Tokyo University)
 題目:"Invitation to topological recursion"
ABSTRACT: Topological recursion is a powerful recursive formalism to
compute a variety of algebro-geometric invariants such as Gromov-Witten
invariants, Hurwitz numbers, and more. In this talk I will give a
pedagogical review of the formalism of topological recursion, and present
several applications in enumerative geometry and integrable hierarchy. If
time permits, I will mention either an algebraic reformulation of
topological recursion in terms of so-called Airy structures of Kontsevich
and Soibelman, or I will mention my recent work on refinement.

場所:早稲田大学 西早稲田キャンパス 51-17-08
日程:2023年6月14日  (水)(15:30 -17:00)

講演者:Thomas Raujouan (Kobe University)
 題目:"Construction of constant mean curvature surfaces via Weierstrass-type
representations"
ABSTRACT: The Enneper-Weierstrass representation (1866) has been used
extensively to construct conformal, minimal immersions into the Euclidean
3-space. Since then, several Weierstrass-type algorithms have been
developed in order to translate the method into other ambient spaces or for
other constant mean curvatures. Among them, the method of Dorfmeister,
Pedit and Wu (DPW 1998) uses a loop group approach to construct non-minimal
constant mean curvature surfaces in the Euclidean 3-space (together with
their Lawson cousins). In my talk, I will present a desingularization
method developed by Traizet (2002) to construct new examples of minimal
surfaces from old ones and show how it has been adapted to the framework of
various Weierstrass-type representations.

皆様のご参加をお待ち申し上げます。

世話人
Martin Guest

-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20230605/6411c541/attachment.html>


Geometry-ml メーリングリストの案内