[geometry-ml:04676] Leschke 氏と Pedit 氏による minicourses のご案内
ONO, Kaoru
ono @ kurims.kyoto-u.ac.jp
2022年 4月 27日 (水) 12:57:41 JST
幾何学分科会メーリングリストの皆様
数理解析研究所に滞在中の Katrin Leschke 氏と Franz Pedit 氏による minicourses を
以下のように計画しました。
Prof. Katrin Leschke Integrable system methods in smooth and discrete surface theory
Prof. Franz Pedit Higgs bundles, harmonic maps, and differential geometry of surfaces
5月6日 13:30-15:00 Leschke 15:30-17:00 Pedit
5月7日 10:00-11:30 Leschke 13:30-15:00 Pedit 15:30-17:00 Leschke
5月8日 10:00-11:30 Pedit
興味のある方は、以下のページから登録 (5月3日締め切り) をお願いします。
https://docs.google.com/forms/d/e/1FAIpQLSem8yi_2UEoZBgWuYCkRstkg-5K56jbzDNDyZF-IPiTXKjBqw/viewform?usp=sf_link <https://docs.google.com/forms/d/e/1FAIpQLSem8yi_2UEoZBgWuYCkRstkg-5K56jbzDNDyZF-IPiTXKjBqw/viewform?usp=sf_link>
前日までに登録された email address に zoom meeting の情報を送ります。
大仁田義裕 (OCAMI)
小野 薫 (RIMS)
=="Integrable system methods in smooth and discrete surface theory” by Prof. Leschke==
Abstract:
In this lecture series we will explore how integrable system methods can be applied
in smooth and discrete surface theory. A core ingredient for this discussion is
the associated family of at connections. For example, for surfaces with constant
non-vanishing mean curvature (CMC), the Gauss map is harmonic by the Ruh-Vilms
theorem: this is equivalent to the flatness of a complex family of connections. We will
discuss how an integrable structure gives rise to a variety of transformations given by
parallel sections of the associated family, e.g., the so-called associated family of surfaces,
the simple factor dressing and the Darboux transformation. In particular, we will discuss
the interplay between three distinct integrable systems associated to a CMC surface and
global properties of the transforms.
As an application, we will discuss the Darboux transforms of Delaunay surfaces, that
is, CMC surfaces of revolution. We obtain new CMC cylinder as well as same-lobed
CMC multibubbletons.
If time permits, we will discuss how the smooth approaches can be discretised in
the example of a discrete polarised curve. We will introduce a discrete equivalent to
the associated family of at connections and discuss closing conditions of its Darboux
transforms.
=="Higgs bundles, harmonic maps, and differential geometry of surfaces” by Prof. Franz Pedit==
Abstract:
Higgs bundles arise in a number of ways: as a 2-dimensional reduction of
the 4-dimensional self-dual Yang-Mills equations; as the equations for harmonic maps
into a symmetric space; as a zero curvature equation for a suitable connection;
as a representation of the fundamental group of a compact surface. These different
incarnations relate aspects of mathematical physics, PDEs, differential/complex/symplectic
geometry and topology. I will attempt to explain some of these connections and how they
can be used to understand problems arising in differential geometry. In addition to providing
a more overarching picture, I will also discuss some examples.
-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20220427/5f59d393/attachment.html>
Geometry-ml メーリングリストの案内