[geometry-ml:03402] Sam Nariman氏、Emmy Murphy氏 講演会20180710
Tsuboi, Takashi
tsuboi @ ms.u-tokyo.ac.jp
2018年 7月 2日 (月) 13:19:45 JST
幾何学関係の皆様
トポロジー関係の皆様
以下のようにお知らせしておりましたが、Sam Nariman 氏が
来日できなくなったためSam Nariman 氏の講演会はキャンセルとなりました。
Emmy Murphy 氏(トポロジー火曜セミナー)
は予定通り行います。
坪井 俊
==========
以下の講演会を行いますのでお知らせします。
坪井俊
====
2018年07月10日(火)
15:00-16:00 数理科学研究科棟(駒場) 128号室
[講演者] Sam Nariman 氏 (Northwestern University)
[講演題目] On the moduli space of flat symplectic surface bundles
[講演概要]
There are at least three different approaches to construct
characteristic invariants of flat symplectic bundles. Reznikov
generalized Chern-Weil theory for finite dimension Lie groups to the
infinite dimensional group of symplectomorphisms. He constructed
nontrivial invariants of symplectic bundles whose fibers are
diffeomorphic to complex projective spaces. Kontsevich used formal
symplectic geometry to build interesting classes that are not yet known
to be nontrivial. Also for surface bundles whose holonomy groups
preserve the symplectic form, Kotschick and Morita used the flux
homomorphism to construct many nontrivial stable classes.
In this talk, we introduce infinite loop spaces whose cohomolgy groups
describe the stable characteristic invariants of symplectic flat surface
bundles. As an application, we give a homotopy theoretic description of
Kotschick and Morita's classes and prove a result about codimension 2
foliations that implies the nontriviality of KM classes.
2018年07月10日(火) (トポロジー火曜セミナー)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
[講演者] Emmy Murphy 氏 (Northwestern University)
[講演題目] Loose Legendrians and arboreal singularities (ENGLISH)
[ 講演概要 ]
Given a Stein manifold X, under what conditions can we ensure that X is
symplectomorphic to C^n? For n>2 the condition of X being diffeomorphic
to C^n does not suffice, and many counterexamples have been constructed
which are detected by symplectic cohomology and the Fukaya category. One
might conjecture that the diffeomorphism type together with a vanishing
Fukaya category characterizes C^n. While this question is currently well
of of reach, we present some new partial results. The main tools we'll
discuss are arboreal singularities, constructable sheaf theory, and
loose Legendrians -- and how they fit together to approach this question.
Geometry-ml メーリングリストの案内