[geometry-ml:02408] MiniCourse"Poisson geometry from a symplectic perspective"David Matrinez Torres (PUC-RIo)
yoshi @ math.chuo-u.ac.jp
yoshi @ math.chuo-u.ac.jp
2015年 7月 13日 (月) 12:56:09 JST
皆様;
重複して受け取られた際にはご容赦ください。
Mini-Cours
by
David Matrinez Torres (PUC-RIo)
"Poisson geometry from a symplectic perspective"
のお知らせです。
PUC-Rio の David Martinez Torres 氏が4週間ほど日本に滞在されます。
この機会に Poisson 幾何、symplectic 構造に関するミニコースを
お願いいたしました。
かなり初等的な導入から、比較的 advanced なところまで解説していただく
予定です。
アブストラクトも含め、詳細は以下のURLをご覧ください。
http://www.math.chuo-u.ac.jp/seminar_D.M.Torres.htm
また、東京圏外からの参加を予定されている方で旅費の希望があれば、
若干の補助が可能ですので、
yoshi AT math.chuo-u.ac.jp
までご連絡ください。
三松 佳彦
=====================================
=====
ENCOUNTERwithMATHEMATICS 番外編
Mini-Course
by
David Matrinez Torres (PUC-RIo)
"Poisson geometry from a symplectic perspective"
7月18日(土) 16:00-17:00, 17:30-18:30 (中央大学理工学部6号館12階
61225号室)
7月25日(土) 16:00-17:00, 17:30-18:30 (中央大学理工学部6号館12階
61225号室)
8月 1日(土) 16:00-17:00, 17:30-18:30 (東京工業大学理学部本館の予定)
Abstract: Abstract:
Poisson structures can be seen as generalizations of symplectic
structures. This generalization is so flexible, that virtually no tool
from symplectic geometry can be pushed to the Poisson setting. In this
series of talks we aim at discussing up to which extent it is possible
to select a class of Poisson structures for which some sort of `
symplectic approach’ is possible.
In more detail, we shall start with a brief introduction to
Poisson geometry, stressing the many different approaches to the subject
(classical mechanics, foliation theory, symplectic geometry). Next we
shall describe a few fundamental problems in Poisson geometry and the
difficulties to tackle them for arbitrary Poisson structures.
We continue introducing the class on integrable Poisson manifolds:
roughly, these are Poisson manifolds dominated by symplectic manifolds
(complete symplectic realizations). Equivalently, a Poisson structure
defines a Lie algebroid structure (an infinite dimensional Lie algebra
of `geometric nature'), and, integrable Poisson manifolds, they are
those Poisson manifolds for which their associated Lie algebroid
integrates into a Lie groupoid (the kind of structure which formalizes `
partial symmetries').
We shall expend some time discussing how to recognize integrable
Poisson manifolds (more generally, integrable algebroids), and,
interestingly enough, we shall see how the integrability of a Poisson
structure (of a general Lie algebroid) amounts to the smoothness of the
leaf space of a foliation (on a Banach manifold).
After describing up to which extend the integrability assumption
exerts control on the Poisson structure, we will see how imposing
additional `compact type conditions' on symplectic integrations leads to
a class of (rather rigid) Poisson manifolds with, to some extent, are a
simultaneous generalization of compact symplectic manifolds, compact Lie
algebras and compact/proper foliations.
連絡先:中央大学・理工学部:三松 佳彦
TEL:03-3817-1749
E-MAIL:yoshiATmath.chuo-u.ac.jp
Geometry-ml メーリングリストの案内