[geometry-ml:02178] 原田芽ぐみ氏の集中講義 (12/3-5)
Mikiya Masuda
masuda @ sci.osaka-cu.ac.jp
2014年 10月 21日 (火) 21:34:31 JST
皆様
このメールを重複して受け取られた方はご容赦下さい.
原田芽ぐみ氏(McMaster大学)に,大阪市大数学研究所が推進している
######################################################################
頭脳循環を加速する戦略的国際研究ネットワー ク推進プログラム
「対称性,トポロジーとモジュライの数理,数 学研究所の国際研究 ネットワー
ク展開」
######################################################################
の活 動の一つとして,以下の要領で集中講義をして頂くことにしました.
興味ある方はご参加下さい.
枡田幹 也(大阪市大)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
場 所: 大阪市大数学教室 数学講究室(共通研究棟301)
アクセス方法は以下をご覧ください.
http://www.osaka-cu.ac.jp/ja/about/university/access
日 時: 12/3(水): 13:30--16:30(途中休憩あり)
12/4(木): 10:00--11:45, 13:30--16:30(途中休憩あり)
12/5(金): 10:00--11:45, 13:30--16:30(途中休憩あり)
タイ トル: Newton-Okounkov bodies, Bott-Samelson varieties, and
Schubert calculus
アブ ストラクト:
The theory of Newton-Okounkov bodies is a far-reaching generalization
of the theory of toric varieties. Given a complex variety X and some
extra data (e.g. a very ample line bundle L on X and a valuation v on
its homogeneous coordinate ring), the Newton-Okounkov body of (X, L,
v) is a convex body of "maximal dimension", i.e., the (complex)
dimension of X. In many interesting cases, it is in fact a rational
polytope. In the case when X is a toric variety and the accompanying
data (L,v) is chosen to be torus-invariant, the Newton-Okounkov body
is the usual Newton polytope from toric geometry. In the case when X =
G/B is a (full) flag variety G/B of a complex semisimple algebraic
group G, Kaveh recently showed that an appropriate choice of (L,v)
yields the so-called "string polytopes" of Berenstein-Littelmann,
which are fundamental objects of study in representation theory. In
particular, the Gel'fand-Zetlin polytopes associated to
representations of GL(n,\C) are Newton-Okounkov bodies of the standard
flag variety Flags(\C^n) of nested subspaces in \C^n. It is widely
believed that the theory of Newton-Okounkov bodies will provide a
fruitful new approach to the study of Schubert calculus, through a
careful study of the Newton-Okounkov bodies of flag varieties and of
associated Bott-Samelson varieties. In particular, it can be _hoped_
that a "Schubert calculus" can be developed where "intersecting
Schubert varieties" translates to "intersecting (unions of) faces of a
single polytope", in the same spirit as the work of
Kiritchenko-Smirnov-Timorin for the GL(n,\C) (i.e. Gelfand-Zetlin)
case and the recent work of Kiritchenko on divided-difference
operators on polytopes and a "geometric mitosis" on polytopes.
This lecture series will be aimed at a broad audience and will attempt
to explain the basic background behind the "hope" mentioned above. In
particular, the lectures are not intended to explain a particular
significant theorem. Instead, I hope to, first, explain the necessary
context and, second, convey some feeling for the reasons why I believe
this subject is so interesting and promising. In particular, the
lectures will be full of questions to which I do not know the answer.
The audience is encouraged to actively participate in the discussion.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20141021/3e3631a8/attachment.html>
Geometry-ml メーリングリストの案内