[geometry-ml:01952] New Year Lectures by Professor Franz Pedit at OCAMI

ohnita ohnita @ sci.osaka-cu.ac.jp
2014年 1月 1日 (水) 07:12:40 JST


皆様

大阪市立大学数学研究所 OCAMI の新年企画として、
ドイツ・Tuebingen大学のFranz Pedit教授の特別講義(2回)を中心とする
特別DGセミナーを次の予定で開催しますので、ご案内申し上げます。

日程:2014年1月9日(水)-10日(金)
場所:大阪市立大学理学研究科数学教室 共通研究棟3階 301室(数学講究室、
変更の場合はご案内・掲示します。)
プログラム:
2014年1月9日(水)
 13:30-15:00 Professor Franz Pedit
Title:   "Constrained Willmore Surfaces: Theory and Experiment"
Abstract: Constrained Willmore surfaces are critical points for the 
Willmore energy under variations of the surface preserving its conformal 
structure. We will explain the (very few) known results for compact 
surfaces in general and then focus on the case of tori. Here theoretical 
results and experimental work (equivariant examples, conformal Willmore 
flow) come together to suggest a first picture of what a "constrained 
Willmore conjecture" might look like.

   15:15-16:45 Katsuhiro Moriya (University of Tsukuba)
Title: "Some Results about Twistor Holomorphic Maps"
Abstract: A map from an almost Hermitian manifold to an even dimensional 
Riemannian manifold is called twistor holomorphic if it has a lift to 
the twistor space and it is holomorphic with respect to almost complex 
structures. A twistor lift is used to investigate conformal geometry of 
a twistor holomorphic map. I will report recent results about twistor 
holomorphic maps by Japanese mathematicians.

2014年1月10日(金)
13:30-15:00 Professor Franz Pedit
Title:   "Conformal Willmore Flow"
Abstract: We will construct a flow on compact surfaces which preserves 
the conformal type and decreases the Willmore energy. In good cases this 
flow will push the compact surface to a constrained Willmore minimizer. 
An interesting feature of this flow is that it preserves derivatives, in 
other words, it can be regarded as an ODE on any of the Hölder spaces. 
This makes this flow analytically much easier to study than the usual 
L^2 Willmore gradient flow. We will explain this flow first on closed 
plnar curves as an alternative to the curve straightening and curve 
shortening flows. The surface version of the flow is then constructed in 
a similar way using the mean curvature half density of the surface 
(instead of the curvature in the case of  planar curves).


皆様のご参加をお待ちしております。
さらなる情報は、順を追ってご案内申し上げます。
尚、旅費の援助を希望される方は、援助可能な場合も
ありますので、大仁田までご相談ください。

大仁田義裕
〒558-8585 大阪市住吉区杉本3-3-138
大阪市立大学数学研究所(所長)






Geometry-ml メーリングリストの案内