[geometry-ml:01933] 距離幾何と指数定理の研究集会 ( 第 2 報) と関連セミナー

Yoshikata Kida kida @ math.kyoto-u.ac.jp
2013年 12月 4日 (水) 22:13:16 JST


幾何学メーリングリストの皆様

先日お知らせした下記二つの研究集会についてですが、
プログラム、タイトル、アブストラクトを公開しましたので再度お知らせいたします。
詳しくはリンク先をご覧下さい。

また、研究集会に関連して下記セミナー「Functional Analysis in Geometry and Topology」を開催しますので、
こちらも併せてお知らせします。

皆様のご参加をお待ちしております。

京都大学大学院理学研究科
木田良才


----------

「Metric geometry and analysis」
日時: 2013年12月9日(月)--13日(金)
場所: 京都大学大学院理学研究科3号館110講義室
世話人: 尾國新一(愛媛大学), 木田良才(京都大学), 見村万佐人(東北大学)
URL: http://www.math.kyoto-u.ac.jp/~kida/conf/mga2013.html


「Further development of Atiyah-Singer index theorem and K-theory」
日時: 2013年12月16日(月)--20日(金)
場所: 京都大学大学院理学研究科3号館110講義室
世話人: 加藤毅(京都大学)
URL: http://www.math.kyoto-u.ac.jp/~kida/conf/ask2013.html


----------

Functional Analysis in Geometry and Topology

第二回目

日時:12月15日日曜日 午前10時〜12時
場所:京都大学数学教室110号講義室

Speaker: Zhizhang Xie (Texas A&M University)

Title: Finitely embeddable groups and strongly finitely embeddable groups

Abstract: The notion of groups finitely embeddable into Hilbert space was introduced by Weinberger and Yu. It is a more flexible notion than coarse embeddability. For finitely embeddable groups, Weinberger and Yu obtained a lower bound of the free-rank of the finite part of K-theory of the maximal group C*-algebra, which in turn was used to give a lower bound of the size of the structure group of an oriented manifold and to give a lower bound of the size of the space of positive scalar curvature metrics on a given manifold. In order to detect finer information of the structure group and the space of positive scalar curvature metrics, Yu and I were led to the notion of groups with strongly finite embeddability into Hilbert space. It is an open question whether every group is (strongly) finitely embeddable. The talk is based on joint work with Guoliang Yu.




Previous seminar:

Functional Analysis in Geometry and Topology

第一回目

日時:11月16日土曜日 午前9時〜12時
場所:京都大学数学教室大会議室

Speaker: Thomas Walpuski (Imperial College London)

Title: Towards a gauge theoretic enumerative invariant for G2–manifolds

Abstract: I will set the stage by introducing G2–manifolds, associative
submanifolds and G2–instantons.  Then I will give a brief outline of some
ideas originating in Donaldson–Thomas' paper "Gauge theory in higher
dimensions" about constructing gauge theoretic enumerative invariants for
G2–manifolds.  One crucial technical issue in the construction of these
invariants comes from the failure of compactness in Yang–Mills theory.
Tian made important progress on this problem.  I will discuss some of his
results in the context G2–geometry and then state a result of myself that
reverses the "bubbling" of G2–instantons.  This result yields new insight
into the shape of the conjectural enumerative invariant and leads to a
number of open questions.  Some recent progress on these questions and some
ideas about how to tackle the remaining ones will be discussed.

----------



-------------- next part --------------
HTMLの添付ファイルを保管しました...
URL: <https://mail.math.nagoya-u.ac.jp/pipermail/geometry-ml/attachments/20131204/a0e239dd/attachment.html>


Geometry-ml メーリングリストの案内