[geometry-ml:01024] Sigmundur Gudmundsson 教授特別講義
大仁田 義裕
ohnita @ sci.osaka-cu.ac.jp
2010年 2月 17日 (水) 13:40:18 JST
皆様
2010年2月18日(木)、大阪市立大学において
スウェーデン・Lund大学のSigmundur Gudmundsson教授による
調和写像や調和射の理論の入門と最近のご研究に関する特別講義(2回)
が、下記の要領で行われます。
奮ってご参加ください。とくに、大学院生の方歓迎です!
大仁田
―――――――――――――――――――――――――――――――――――
………○●◎◇◆ 大阪市立大学数学研究所微分幾何学セミナーの御案内 ◆◇◎●○………
―――――――――――――――――――――――――――――――――――
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 日本語版 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
講演者:Professor Sigmundur Gudmundsson(Lund University, SWEDEN)
タイトル:Harmonic morphisms, complex analysis and how to generalize it.
(1st lecture)
日時:2010年2月18日(木)10:40〜12:10
場所:数学講究室(3040)
アブストラクト:
It is a well-known result in classical complex analysis that every
holomorphic or anti-holomorphic function is harmonic and conformal.
It is easy to see that they also pull back harmonic real-valued
functions to harmonic functions. This last property actually
characterizes
the holomorphic and anti-holomorphic functions in the complex plane.
Harmonic morphisms are maps (M,g) -> (N,h) between Riemannian
manifolds which pull back harmonic functions to harmonic functions.
They have many properties similar to those of holomorphic functions
which they generalize.
We will give a general introduction to the theory of harmonic
morphisms
講演者:Professor Sigmundur Gudmundsson(Lund University, SWEDEN)
タイトル:Harmonic morphisms from Lie groups and symmetric spaces (2nd
lecture)
日時:2010年2月18日(木)16:20〜17:50
場所:数学講究室(3040)
アブストラクト:
We will discuss the existence problem for harmonic morphisms between
Riemannian manifolds. In particular we shall focus our attention on
recent results on complex-valued harmonic morphisms from Lie groups and
symmetric space.
%%%%%%%%%%%%%%%%%%%%%%%%% English version %%%%%%%%%%%%%%%%%%%%%%%%%%%%
Speaker : Professor Sigmundur Gudmundsson(Lund University, SWEDEN)
Title : Harmonic morphisms, complex analysis and how to generalize it.
(1st lecture)
Date : Feb. 18 (Thu.) 2010, 10:40〜12:10
Place : Dept. of Mathematics, Sci.Bldg., 3040
Abstract:
It is a well-known result in classical complex analysis that every
holomorphic or anti-holomorphic function is harmonic and conformal.
It is easy to see that they also pull back harmonic real-valued
functions to harmonic functions. This last property actually
characterizes
the holomorphic and anti-holomorphic functions in the complex plane.
Harmonic morphisms are maps (M,g) -> (N,h) between Riemannian
manifolds which pull back harmonic functions to harmonic functions.
They have many properties similar to those of holomorphic functions
which they generalize.
We will give a general introduction to the theory of harmonic
morphisms
Speaker : Professor Sigmundur Gudmundsson(Lund University, SWEDEN)
Title : Harmonic morphisms from Lie groups and symmetric spaces (2nd
lecture)
Date : Feb. 18 (Thu.) 2010, 16:20〜17:50
Place : Dept. of Mathematics, Sci.Bldg., 3040
Abstract:
We will discuss the existence problem for harmonic morphisms
between Riemannian manifolds. In particular we shall focus our
attention on
recent results on complex-valued harmonic morphisms from Lie groups and
symmetric space.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Geometry-ml メーリングリストの案内